
291

 Cray Security Administration: Tricks of the Trade

Bonnie L. Hall

Exxon Upstream Technical Computing

1997 Cray User Group Meeting, San Jose CA.

 Abstract

Control is an important aspect of computer security. There are many things an administrator can do to improve system
security without installing expensive tools or waiting for vendor enhancements. This paper will focus on the control
measures which may be implemented on a large UNIX system to help the administrator gain control over users, data and
privilege. While the issues presented in this paper are ones which are more evident in a large computer system, many of the
suggestions and examples herein are relevant to any UNIX machine. References to Cray UNICOS Operating System specific
tools such as System Audit Logs, Privilege Access Lists, and NFS UID/GID mapping, will be noted.

 Security & Controls

The topic of computer security is a huge one, encompassing all aspects of computing: hardware, software, networks,
operating systems. This paper will narrow the broad topic of security to just one aspect: controls.

The term "controls" is used to refer to policies, procedures and tools which are used to gain control over a computer
system. Every system administrator strives to find the proper balance of control for his installation. Too many controls
and the system becomes bogged down and difficult to use. Too few controls and the system becomes difficult to
administrator and secure.

It is essential for a system administrator to be in control of the system if it is to be secure. There is a lot more to
securing a system then just the implementation of good control measures, but reasonable controls will create a firm
foundation for a secure computing system.

Many sites have years of experience administering small UNIX machines which are shared among several people
working on a common project. In this environment the emphasis of security has been on the network and keeping
unauthorized users off the system. As workstations grow into superservers and multiprocessors, the user community
becomes larger and more diverse. Large, expensive systems frequently manage valuable assets. These factors bring
control concerns from the old mainframe model into the limelight in the client/server arena. Data is not intended to be
shared among the entire user community, it becomes difficult keep track of the users, and the use of privilege comes
under more scrutiny.

The intention of this paper is not to reiterate existing documentation nor to recap information which can be found in a
typical UNIX security book. Instead it will focus on things an administrator can do to organize a system in a sensible
and efficient manner. This paper will discuss controls which are sensible to implement on any system, whether or not
the site has chosen to implement Cray UNICOS security features such as data compartments and Privilege Access Lists
(PALs).

 Risk Assessment

To implement appropriate controls for a given environment it is necessary to assess risk; determine what needs to be
protected and how much should be spent in the protection. While it is seldom feasible to eliminate all risk from a
system, cost effective controls can be implemented to reduce risk to an acceptable level. There are many factors to
consider when determining possible exposures on a system, including (but not limited to):

• Health and Safety Concerns
• Legal and Ethical Issues
• Information Disclosure
• Information Loss
• Disruption of Service

Risk is inherent to all business. The only time when there is no risk is when there is nothing worth protecting, which is
contrary to the notion of business itself. There are two components to risk: severity and probability. It is possible to
reduce the risk of an exposure to an acceptable level by lowering the severity of the exposure, the probability of the
exposure, or both.

The first component of risk, severity, may be viewed as the cost incurred to business if a vulnerability is exploited. It is
important to realize that cost is not merely a monetary issue. Any types of loss should be viewed as cost, including
wasted work force effort, a tarnished reputation or loss of competitive advantage. If the consequences from an exploited
exposure are severe, it is necessary to reduce the risk.

292

The second component of risk is probability, how likely is it that an exposure will be exploited? If an exposure is likely
to occur frequently, it is often wise to reduce the risk of the exposure.

The cost of implemented controls must be less than the potential loss from the exposure. It is up to the technical experts
to identify potential exposures and the probability of occurrence. It is the responsibility of the system owners, the people
who own the assets which are at risk, to determine how much risk is acceptable and how much to spend to reduce it.
Input from the system owner is essential in the implementation of reasonable controls. A good example is the risk of a
system crash. An administrator’s first reaction is often “UNACCEPTABLE!!” because he feels that a system crash is a
poor reflection of his technical expertise. However, the system owner is likely to view a system crash in a different light.
If the "cost" of a crash is negligible in relation to the value of the business, the system owner will not be willing to spend
a lot of time or money in preventing an occasional occurrence of the exposure.

For the purpose of illustration, invent a scenario of a car manufacturer designing an automatic braking system. Imagine
that a risk assessment revealed that a sealant used in the brakes may become brittle and fail in temperatures below
minus 20°F. The exposure is brake failure. The probability is low, not many people drive in minus 20°F. But the
severity is high, the worst case would be the loss of human life. An inexpensive control, say warning people not to drive
in extreme cold, would not good enough in this case. Due to the severity of the exposure, the system owner would most
likely determine that it is necessary to spend more money on controls and attempt to eliminate the risk completely.

Often common sense control measures are often sufficient to reduce risk to a reasonable level. For example, years ago I
rented an apartment in a good neighborhood and did not concern myself with the risk of robbery. I left a large jar of
small change in full view of a window, even though I was storing jewelry and coins of value in the apartment. One
afternoon I returned from work to find my window smashed and the change jar missing. I was lucky and the change jar
was the only item taken, the severity of the robbery could have been much worse. Lack of a inexpensive control
measure, moving the change jar away from the window, nearly resulted in a very costly security breach.

In summary, a risk assessment is a tool to help system administrators and system owners determine reasonable control
measures to protect the system from identified exposures. The process of risk assessment may be summed up as follows:

1. Determine system exposures. "What can go wrong?"
2. Evaluate the severity of each exposure. "What sort of damage could result?"
3. Determine the probability of each exposure. "How likely is this to occur?"
4. Determine control measures to reduce risk. "What can I do to reduce the likelihood of this occurring?"

"What can I do to reduce the severity of an occurrence?"
5. Evaluate cost of each control measure. "Is the cost of the control less than the potential cost of exposure?"
6. Plan to implement controls which make sense. "Have I reduced the risk to an acceptable level?"

This paper will examine potential control measures to reduce risk in three general areas: data, users and privilege.

 Managing Data

Data Ownership

On a large system it becomes difficult for an administrator to keep track of all the data and who should be allowed
access to it. A good way to manage this problem is to assigns data owners for each UNIX group on the system. Since
all data has a group associated with it, giving the groups owners results in all data having an owner. The administrator
can keep a text file with this mapping and use it to manage all data on the system. The data owner is responsible for
knowing what data is stored on the system and who can access it. The administrators runs reports to help data owners
review and maintain access to their data but are not responsible for knowing the contents of each file and who should be
allowed to look at it.

Sample file to map groups to data owners:

#group: owner: organization: mailstop:
research: Jane Doe: R&D: 123 Bldg. A:
testing: John Smith: Systems: 999 Bldg. Q:
production: Jill Smith: Systems: 111 Bldg. Q:
operations: A. Jones: Operations: 100 Bldg. Z:

293

The awk command may be used to create list of groups in an organization. Let $grpown be set to the group ownership
file:

getgrps ()
{ cat $grpown |\
 awk -F: -v org=$1 '{
 if ($3==org)
 { grprpt[i]=$1
 i++}}
 END{ for (i in grprpt) print grprpt[i]}' }

With this routine it is easy to create a report for each organization:

for org in #cut -d: -f3 $grp.own | sort -u#
 do for group in #getgrps $org#
 do
 processing for each group
 done
done > $org.rpt

In most cases the user of the data is not a good choice for the data owner. The owner must be in a position of
responsibility and be empowered to make business decisions with a cost equivalent to the data's value. Therefore
management is often the best person to be a data owner.

Each group of customers will have a procedure to follow to grant data access. The data owners may want to appoint
representatives to follow procedures and give approval on their behalf. This is fine, as long as the system administrators
knows who is the proper contact for each group on the system. The key point is that each user organization takes
responsibility for their data and the system administrator is not concerned with the details of how each customer decides
to manage their data. The system administrator can follow a single set of procedures for satisfying all user requests:

• Receive request from the user community
• Obtain authorization from data owner or appointed representative
• Satisfy request using approved and documented mechanism
• Log actions for subsequent report to data owners

Data Access Review

System Administrators may wish to scan for permission changes on key files on a regular basis. This can be done easily
with the UNICOS spfilck command. The spfilck command monitors and controls ownership, mode, and security
parameters of files. It reads or creates a control file, /etc/permlist, which defines the actual or desired file attribute
(owner, mode, security) definition. If file permissions change from the desired values, the spfilck command will change
the file permission back to the desired value and list the changes so an administrator may investigate.

In addition to the frequent scans for changes to key file permissions, the data owners should perform a more
comprehensive data access review at least annually. A script may be written that uses the group ownership file as input
and scans the system to create a report for each data owner. This review should be customized to scan for items which
are important to the installation. The following items may be of interest:

For each data owner
For each group he owns

1. Permissions on high level directories
2. Permissions on all files in key directories
3. Data with world write access
4. Contents of Access Control Lists
5. Permission on SUID/SGID executables
6. NFS mounted file systems
7. Exported file systems
8. For each member of the group

a. person's name and organization
b. contents of trusted hosts file
c. permissions on home directory
d. date of last system access
e. special privileges assigned to user

294

Data Access Violation Reporting

A data owner may want to see all data access violations committed against their data. The UNICOS Install tool
provides parameters to set for logging of all data access violations. It is important to set the parameter to track all path
names on access as well to record the full name of the violated file in the log. The UNICOS reduce command is used to
obtain log information. A data access violation entry would look something like this:

Apr 21 08:03:29 1997 Discretionary o_lvl: 0 s_lvl: 0 jid:57163 pid:42017
r_ids:[user1(12345),group1(100)] e_ids:[user1(12345),group1(100)]*******
Login uid: user1(12345)

Function: open (5) Violation: Permission denied (13)
System call : access (33)
Subject: Compartments : none
Permissions : none
Class : 0
Categories : none
Access Mode : read
Object: Level: 0 uid:user2(321) gid:group2(200) device:34,73 inode: 6157
Pathname : /users/data/private
Compartments : none
Class : 0
Categories : none
Mode : 100551

In this example user1 tried to read the file /users/data/private which has permissions of 551. Since user1 did not have
read access to the file a record was cut showing the data access violation.

UNICOS system log entries have a record format which is not convenient for processing and reporting. The system
administrator may use the awk command to put all the key information on a single line, making it easy to use tools such
as sed, grep and awk to create reports:

/etc/reduce -g $grp -f $logfile -t desc -p | awk '{

 /Discretionary/ {
 month=\$1
 day=\$2 }

 /e_ids/ {
 id=\$2 }

 /Access Mode/ {
 mode=\$4 }

 /Object/ {
 ownu=\$5
 owng=\$7 }

 /Pathname/ {
 path=\$3
 printf("%s %s %s ATTEMPT %s TO %s OWN:%s,%s\n",\
 month, day, id, mode, path, owng, ownu }
}'

Producing a one line per record format:

Apr 21 user1 ATTEMPT read TO /users/data/file OWN:group2(200),user2(321)

Once each access violations has been condensed to one line it can be written to a file containing all access violations
for the given time frame. A simple grep on the file for the phrase "OWN:group2" is all that is required to produce a
data access violation report for group2.

NFS ID Mapping

NFS ID Mapping is a UNICOS tool which is easy to use and very helpful in maintaining data security in an NFS shop.
The idea is to create maps between the users and groups on the Cray and the users and groups on particular workstation
domains. This mapping ensures that all remote NFS users are who you think they are. There are no problems with
duplicate user and group names allowing remote users to access data which they do not own. NFS ID mapping is also

295

useful from an operational standpoint when user and group names are not consistent with in a network. Here is a brief
overview of what is required to set up NFS ID mapping.

1. A file must exist in /etc/uidmaps/users called domain.passwd for each domain where user IDs will be mapped to
Cray user IDs. See the script /etc/uidmaps/Get.domains for examples of automated ways to get the remote
/etc/passwd files. There is no requirement that these passwd files be authentic. If the user IDs and user names on
the remote host are known, a passwd file may be created.

2. A file must exist in /etc/uidmaps/groups called domain.group for each domain with group IDs mapped to Cray Group
IDs. See the script /etc/uidmaps/Get.domains for examples of automated ways to get the remote /etc/group files.
There is no requirement that these group files be authentic. If the group IDs and member names on the remote host
are known, a group file may be created.

3. Exception files are created to map names and groups for each domain. The exception files are only necessary when
a user or a group has a different name on the Cray and in the workstation domain. The exception files tell the
mapping code who is who. See the man page for the nfsmerge command for details on creating exception files.

4. Create a list of hosts in each domain which will be using NFS. Call these files /etc/uidmaps/hosts/domain for ease
in writing a script to handle the administration.

5. Create a list of domains to be mapped and use the nfsmerge command to create group and user ID maps for each
domain.

6. Create a list of hosts in each domain and use the nfsaddhost and the nfsaddmap commands to load the maps into the
kernel to provide NFS ID mapping for the specified hosts.

Creating the exception files is largely a manual process and the most time consuming portion of the NFS ID Mapping
implementation. The exception files are required to show where to map each inconsistent user and group. This process
will be much faster for installations that have consistent user and group names across all UNIX platforms.

To make administration of NFS ID mapping easier, put all nfsmerge and nfsaddmap commands into scripts to run
whenever the mapping needs update. A loop can be used to issue the lengthy nfsmerge command for each domain:

USRS=/etc/uidmaps/users
GRPS=/etc/uidmaps/groups
LOGS=/etc/uidmaps/log
MAPS=/etc/uidmaps/maps
HOST=/etc/uidmaps/hosts
DOMAINS=`cat /etc/uidmaps/domains`
for domain in $DOMAINS
 do
 mv $MAPS/u.cray.$domain $MAPS/u.cray.$domain.old
 mv $MAPS/g.cray.$domain $MAPS/g.cray.$domain.old
 /etc/uidmaps/nfsmerge -L $USRS/e.cray.$domain \ #UID Exceptions input

-u $MAPS/u.cray.$domain \ #UID Map output
-E $GRPS/e.cray.$domain \ #GID Exceptions input
-g $MAPS/g.cray.$domain \ #GID Map output
/etc/passwd $USRS/$domain.passwd \ #passwd files input
/etc/group $GRPS/$domain.group \ #group files input
> $LOGS/l.cray.$domain #audit trail output

done

A script may also be used to install the maps into the syetm kernel:

/etc/uidmaps/nfsidmap -d # Disable ID mapping
/etc/uidmaps/nfsclear # Clear kernel NFS Map table
/etc/uidmaps/nfsaddhost -l localhost # Add loopback entry
for domain in $DOMAINS
 do /etc/uidmaps/nfsaddmap -u $MAPS/u.cray.$domain -g $MAPS/g.cray.$domain $domain
 for host in $HOST/$domain
 do /etc/uidmaps/nfsaddhost -d $domain -c -s -l $host
done ; done
/etc/uidmaps/nfsidmap -e #enable ID Mapping

296

 Managing Users

Login Ownership

It is important that a system administrator knows who has access to the system and can audit the activities of each
individual. To accomplish this there must be a one to one correspondence between user names and humans. If it is
necessary to share a user name among several people, each person should log into the system with their own user name
and use the switch user command to access the shared ID.

Each user name should be mapped to an owning organization. The owning organization is ultimately responsible for the
actions of their users. Since all groups are mapped to a data owner, it makes sense to map each user name to one group
and let the data owner act as ID owner as well. A simple way to do this is to let the first group in a user's GID field. the
"primary" group, map to his organization. In user communities with frequent personnel changes it may be difficult to
keep primary groups up to date. An automated system with links into the payroll data is a good way to keep track of
people because most business are very good about keeping payroll data current. A nightly scan would detect transferred
and terminated employees. Logins for transferred users should be suspended until the new organization agrees to take
responsibility for the user. Logins must be suspended or removed for employees who have left the company.

Adding a field to indicate primary groups allows an easy way to create reports which look at people on the system:

#group: owner: organization: mailstop: primary?
research: Jane Doe: R&D: 123 Bldg. A: 1:
testing: John Smith: Systems: 999 Bldg. Q: 0:
production: Jill Smith: Systems: 111 Bldg Q: 1:
operations: A. Jones: Operations: 100 Bldg. Z: 0:

A awk command may be used to create list of primary groups in a given organization. Let $grpown be set to the group
ownership file:

getpri ()

{ cat $grpown |\
 awk -F: -v org=$1 '{
 if ($2==org)
 {if ($5 == 1)
 {prigrp[i]=$1
 i++}}}
 END{ for (i in prigrp) print prigrp[i] }' }

Now the report for each organization is structured as follows:

for org in #cut -d: -f3 $grp.own | sort -u#
 do for group in #getgrps $org#
 do
 processing for each group: data issues
 done
 for primary in #getpri $org#
 do
 processing for members of the primary group: user issues
 done
done > $organization.rpt

Login Aging

Users rarely notify administrators when they cease to use a system. It is wise for the administrator to implement a
system to "age" unused IDs. After an initial threshold for lack of use is reached a login is suspended. Once a second
threshold is reached a login is removed from the system.

Various UNICOS utilities show different dates for last system usage. Discrepancies in dates come from the fact that
some tools record just the last interactive login while others consider the use of NQS batch, switch user, and background
processes as access. For the sake of login ID aging, it is important to look at the last time the ID was used in any way,
shape or form. The most accurate place to collect this data would be from the UNICOS security logs. However, the
overhead of searching logs to determine the last use for each user is not practical. The next best place to collect this
data is in the UNICOS accounting system with the file /usr/adm/acct/sum/loginlog.

The loginlog file tracks a date next to each user name. If there is no record of system usage the date is recorded as 00-
00-00 and it is necessary to age these logins as a special case. One solution would be to let the code which adds login

297

IDs cut a record to a file with the data of installation. If 00-00-00 is encountered in the loginlog, the aging routine would
go to the this file and determine account age based on the date the login was added to the system.

There are also system logins such as bin, sys, Idle, sync which may never be used but are left on the system as users of
data. This special case may be handled by maintaining a list of exempt logins in the aging routine.

UNICOS does not currently support login expiration dates but other systems at an installation may have this capability.
It may make sense to suspend logins which have expired elsewhere.

The Login Aging Routine may report the following information to each organization monthly:

• Logins which will be removed if not used within a month
• Logins which have been removed due to lack of use
• Logins which have never been used and are aging based on date of installation
• Logins which will be suspended if not used within a month
• Logins which have been suspended due to lack of use
• Logins suspended due to expiration date on other systems
• Logins which active and enabled

The UNICOS User Database (UDB) includes field called "disabled" which may be set to one to suspend a login. When
a login is removed via the UNICOS "New User" routine it removes the user's home directory but leaves data owned by
deleted ID in other parts of the system. Each installation should work with the data owners to determine a way to
manage data disposition when a user is removed from the system. It is essential that any code which removes or
changes a home directory do various checks to ensure it never executes on the home directory of /.

Satisfying User Requests

User support becomes an important topic as the size of a system increases. While it is desirable to limit the number of
people with full root capabilities, more support staff is required to satisfy user requests. Problems occur in identifying
users and obtaining authorization to perform requested actions. Audit trails of specific actions taken by root are difficult
to reconstruct, making it difficult to provide reports for data owners. Another problem which may occur when multiple
root users are handling user requests is inconsistent results which leads to frustration and wasted cycles.

These problems can be eliminated by use of an application to handle user requests. To create the application, the root
users can put commands used into a script each time a user request is satisfied. These scripts may then be invoked from
a menu which may restricts the administrator to operating on IDs in particular organizations. Commands which require
privileged may be invoked SUID to root. A routine to log all actions may be added to make reporting administrative
actions easy. The application will allow the distribution of user support to administrators in the user community. The
following user support functions may be included in the application:

• ID Maintenance
Add New Login
Remove User Login
Suspend User Login
Unsuspend User Login
Change a users shell
Change a users tape limits
Change a users login name
Change a users user ID number
Change a users password
Run cll to reset password fail counter

• Group Maintenance
Add a New Group
Remove A Group
Add User to Existing Group
Remove a User from a Group
Change a Users Primary Group
Show Group Owner and Members

• Resource/Privilege Changes
Add/Remove MPP access
Remove ALL privileges from a user
Remove ALL admin groups from a user
Add/Remove a charge code for a user
Add Operator privilege to a user
Add Admin account for a security contact

298

Change users tape resource limits
Change users data migration threshold

• Data Movement and Access
Move data
Copy data
Delete data
Restore data from backup
Create a directory
Change ownership
Change group
Change access mode
Change account code

• Information
Display user information
Display user UDB record
Scan system logs for user login failures
Show group owner and membership
Long listing of directory contents

A paper with details about implementing such as system was presented at the Spring 1995 Cray User Group Meeting.
See the Spring 1995 Proceedings of the Cray User Group, p349-354, "Distributed User Support on Exxon's Cray
Supercomputer". The paper is also available on the Internet from the Security MIG's page off the CUG home page:
http:\\www.cug.org.

User Violation Reporting

In UNIX users have the ability to do things that can compromise system security. It is wise to monitor certain aspects of
user activity to ensure that the users do not leave the system in a vulnerable state. Some suggested areas for monitoring
user activity:

• File permissions: To reduce the risk of Trojan horse attacks, do not allow users to give any one write access to his
home directory or environmental files.

• Trusted hosts: Do not allow users to share accounts via the trusted host mechanism. If possible, don't allow users to
use the trusted hosts mechanism at all. If you must use these functions, the .rhosts files kept by users need to be
monitored. These files should not contain wild cards, should only specify logins that belong to the person who uses
the account and file permissions on the .rhosts file should be set to 600.

• FTP Access: A .netrc file may be kept to define user, machine, passwords for FTP. It is necessary to scan the
contents of .netrc files to ensure the users do not have hard coded passwords. FTP cannot be used by a batch job to
transfer files without a hard coded password in the .netrc file. Another method of file transfer will be required.

• Switch User: The sulog in /usr/adm will show when users switch user to each other. If two people are working
together then the use of switch user is valid and even desirable. However, the use of switch user may also indicate
password and account sharing.

• Passwords: Although the encrypted password field is not visible in UNICOS, encrypted passwords may be visible on
other systems. Users frequently use one password throughout the network. If a password is breached on one
machine, it may be breached all over the network. Educate users to use different passwords on each platform. It is
sufficient to vary a single character from machine to machine. Educate administrators to set good passwords on
behalf of users. It may be worth while to run Crack against the encrypted passwords and notify users if their
password is breached.

• Failed login attempts: A administrator should be aware of the "typical" state of failed password counts on his
machine and investigate if this number suddenly increases. The UNICOS /etc/cll -L command will show all
non-zero failed password counters on the system. If the UNICOS system log is configured to record all failed login
attempts, the administrator could gather details on how a given user managed to fail out his login. Note that the
failed password counter is increased from zero to the disable threshold in one fell swoop when a user fails the /bin/su
command three times in a 60 second interval.

• Inactive sessions: People leave terminals unattended, no matter how often they are reminded of the importance of
logging out and locking screens. It is wise to create a cron script to periodically looks for inactive sessions and logs
them off. Each installation will have different thresholds to determine an "abandoned" session, be careful not to
terminate long running batch jobs accidentally. The routine to perform inactive session log out should be tested in
logging mode for a few days before going production.

299

• The spcheck command: The UNICOS MLS System comes equipped with a command that will scan the system and
perform many security checks, including:

• List users who have administrative categories.
• List all setuid and setgid files in the /bin, /usr/bin, /usr/lib, and /etc directories.
• Report users in groups root, adm, bin, and sys.
• Report infrequently used login IDs
• List .profile and .cshrc files that are writable by anyone.
• Report users with duplicate user IDs
• List users who cannot change their passwords
• List users with passwords that do not expire
• Report users with numerous switch user failures
• Report files that have the world read or write permission set
• Report programs with the setuid or setgid bits set.
• Report block/character special files not in /dev.
• Checks /etc/passwd and /etc/group files for consistency

 Managing Privilege

Although there are tools available to segregate all or part of Superuser privilege, this paper will only look at control
measures for a system running the Superuser privilege policy. In native UNIX systems, all privilege comes from the
Superuser root account.

Frequently people become confused when discussing privilege on UNIX systems. Issues such as system installed login
IDs and groups that access proprietary data cloud this issue. Privilege in a native UNIX system is really a very simple
concept, all privilege comes from the superuser account, root. System IDs are simply another account. Membership in a
particular group controls access to data. While a group may control access to SUID to root programs, the privilege still
comes from the fact that the program runs as root.

Superuser must be trusted because it is all powerful, with the ability to change audit logs, reconfigure the system and
access all user data. Control around the use of the all powerful root account is very important.

To make the task of placing controls around root usage manageable, it is useful to look at each way a process could
become the superuser. There are only five ways to obtain root privilege:

1) The system is in single user mode
2) A person with the root password logs directly into the root account
3) A person with the root password uses the switch user mechanism to become root
4) An SUID to root program is executed
5) A program is executed from root’s crontab

Placing reasonable control measures around each of these ways to reach root goes a long way toward obtaining control
over the elusive superuser account.

Single User Mode

Single user mode is the state the system is in when it is down for maintenance. The first control to manage single user
mode is to make sure the system is completely down. TCP/IP should not be running, users should not be able to log in.
The batch subsystem should be disabled and unnecessary file systems should not be mounted. Minimizing system
activity will reduce the risk of unauthorized access and changes while in single user mode.

All changes should be planned, documented and approved by management before the system is bought down for
maintenance. The administrators should create a detailed plan of commands to execute during down time and this plan
should be approved by several technical people.

The UNICOS slog daemon will run in single user mode and collect security log data. However, it is likely that the
problems associated with storing this data during single user mode will make it impractical to collect log data while file
systems are offline. An installation may opt to turn off security logs in single user mode to prevent buffer overflow.
When security logs are not active it is extremely important to have multiple people present during down time. The
spaudit command which enables system logging should be added to the automated startup processes to ensure that
security logging is enabled when the system is returned to multi-user mode.

Direct Login to root

Its not wise to allow system administrators to log directly into the root account because there is no audit trail to indicate
which individual accessed root. The UNICOS system logs may be scanned with /etc/reduce -u root -t logn to ensure no
direct root logins have occurred via any mechanism. The administrators should not access root via telnet, rlogin, rcp,

300

rsh, ftp, NQS, etc, etc, etc. People should log in as themselves then use bin/su to access root, providing a audit trail of
the access.

Switch User to root

This is the preferred method for accessing the root account in multi-user mode. Configure the slog daemon to record all
occurrences of su to root because the /usr/adm/sulog audit trail is in lain text and easy to alter. In the event that specific
audit trails of root actions are required, the UNICOS accounting system records all commands issued by a given login
session.

Limit the number of people with the root password. This can be done by using other privilege mechanisms to allow
access to commands in administrative command. SUID to root code, UDB privileges and Privilege Access Lists are all
mechanisms that may be used in a UNICOS system to limit the number of root users.

Encourage root users to minimize the time spent in root, reducing the risk of mistakes and making it easier to audit root
activity. A good way to help root users remember to perform just one function then exit root is to require a comment
whenever a su to root is performed. A front end to the /bin/su program may query the user for a reason for the root
access. The data collected is useful for management review and to recognize when a root user may be able to do his job
with out access to root.

SUID to root Code

Many of the SUID to root programs that are a part of the UNICOS system are intended for use by the entire user
community. These programs run as root to perform specific privileged action on behalf of a user. Other SUID to root
programs are restrict to a particular group, creating the issue of "privileged groups" on the system. This is not a problem
as long as the administrators and data owners are aware that membership in particular groups allows the user to execute
programs as root. It may be preferable to keep a clear distinction between groups and privilege. Let groups control data
access and use Access Control Lists (ACLs) to define who can execute restricted SUID to root code. There are several
benefits to this scheme, including a clear distinction between data access and privilege assignment, easy review of
privileged users, and no chance of accidental privilege acquisition when someone is added to a group.

Many installations create local SUID to root code to help limit the number of people with the root password or allow the
user community to run a privileged command. This is a good control measure provided detailed guidelines are in place
to ensure that local SUID to root code is properly protected and authorized. It is important to treat the installation of
local SUID to root code as an assignment of privilege. Multiple administrators should check the code to ensure that
proper traps are in place to keep users from issuing unintended commands as root. Reasonable file protections should be
placed on the code and an ACL may be in order to limit access. All use of local SUID to root code should be properly
documented and approved by system and data owners.

Programs Executed from roots crontab:

The UNIX scheduler, cron, runs programs on behalf of users. Each authorized user may create a table, crontab, which
lists programs to be run by cron at a specific time and day. It is important to protect programs which are called by root's
crontab. Controls should be put in place to ensure that only root users can write to these critical files and the directories
in which they reside. Consider using a library to store all programs called by root's crontab for ease in monitoring
contents and access. Only root users should update these programs. All changes need to be properly authorized and
tested before production. Programs run by root's crontab must be treated as high risk; they kick off unattended and run as
root, making them vulnerable to Trojan Horses and malicious code.

 Summary

The topic of control measures which may be used to increase system security is huge, this paper barely scratches the
surface. Hopefully administrators of large UNIX systems got ideas for easy ways to manage their system to increase
system security. Numerous books are available on UNIX security and huge amounts of data on the topic can be found on
the Internet. Anyone charged with the task of securing a UNIX system is strongly encouraged to continue this research
and share their finding with the rest of the computing community. UNIX security has improved by leaps and bounds in
the past few years and this trend is bound to continue as long as UNIX remains a key part of business and system
administrators are diligent in minimizing risks in their computing environment.

