Experiences Tuning a J90 for Engineering Applications Sharan Kalwani shan@cray.com CUG 1997, San Jose

Motivation

- Why do sites choose a J90?
 - Cost is usually the primary consideration
 - Computational needs satisfied by J90
 - Starting point for future growth
 - Resources are also a major factor

Motivation (contd...)

- Field experience revealed:
 - Several sites out there (250+)
 - Site profiles were all different, eg:
 - Human resources often limited
 - Expertise scarce
 - Learning curve was steep
 - Balancing act of system versus "real" work

Benefits

- Share useful tips and techniques
- Gain insight into other possible scenarios
- Learn what works
- Learn what may NOT work

Caveat Emptor

- Target Audience
 - Engineering Applications
 - Computational Fluid Dynamics (CFD)
 - STAR-CD, KIVA-2, CHAD
 - Metal Deformation Codes
 - (LS-DYNA)
 - Finite Element Analysis (FEA)
 - NASTRAN, etc...

Typical J90 Environment

- Usually small systems:
 - -4 to 8 CPUs
 - 64 Mwords
 - Single IOS
 - SCSI disks (sometimes also IPI disks)
 - small disk farm
 - no large online tapes (4 or 8mm only)

J90 Environment (contd)

- Staff at sites:
 - single, but multi-tasking person :-)
 - has a real job in addition to Cray work
 - usually sophisticated end user, but
 - not a "pure" systems type

Tuning Regions

- UNICOS Kernel
- Memory and
- Process Scheduling
- Disk Drive Strategy

Tuning: J90 Kernel Arena

UNICOS Kernel

- Impacts the overall running of the system
- Even without source, some tuning possible
- Requires however a few iterations to get things right
- Often affected by the applications mix

J90 Kernel Arena

- UNICOS Kernel:
 - mcache (or NBUFs) often an easy target
 - default was 5% of available memory:
 - typically 6000 buffers for a 64 MW system
 - usually configured as 4096 on stock systems
 - Can be set to 2048 for known mix

- UNICOS Kernel
 - mcache or NBUF can be done at
 UNICOS run time via param file changes
 - dramatic effect on job mix run
 - careful when tweaking buffers, too low a value chokes many a system.

- UNICOS Kernel:
 - Network Buffers or TCP/IP space
 - MBUFS typically set at 1800
 - can be varied depending upon
 - network media type (eg Ethernet, FDDI...)
 - application requirements
 - Usual range 1200 to over 18000!
 - change "TCP_NMBSPACE" in param file

• UNICOS Kernel:

- Network send and receive space:
- Use <u>netvar</u>
- Depends a greta deal on netw patterns

• NFS:

- Use large "rsize" and "wsize" on mounts
- -4096 default, can be upto 32768.

- **UNICOS** Kernel:
 - To improve certain types of I/O
 - look at <u>sarreports</u>, eg for listio (<u>sar</u>-z)
 - bumping of physical I/O buffers beneficial
 - not easy to do, requires kernel rebuild
 - typically set at 200, can be increased to 400
 - I/O tables eg LDDMAX, PDDMAX, etc...

- Net Gain:
 - Reduced kernel size,
 - Reduced table size,
 - Larger Available Memory for jobs

J90 Scheduling

- Memory and Process Scheduling:
 - Major difference experienced via
 - nschedv command
 - Default settings via
 - /etc/nschedv.day and schedv.nite scripts
 - usually conservative

J90 Scheduling

- On a 64 Mw system, <u>nschedy</u> sets the
 - -hog pool to 100000 clicks (or 48.8 Mw)
- Due to kernel "shaving", this pool effectively rose to
 - 122700 clicks (or 59.9 Mw!)
- Use extra memory for
 - jobs
 - Idcache, etc...

J90 Scheduling

- Since memory is the prime resource:
 - memory based NQS setup is important,
 - stock scripts need always be modified
 - NQS global memory value must be chosen carefully
 - usually 1.7 to 2x of available memory

Disk Strategy

- Memory and Disk Strategy:
 - NQS memory oversubscription limited to a small 1.x factor
 - stock swap is set to 1 or 2 disks
- Swap speeds limited to SCSI disks
- Answer:
 - Stripe disks!!

Disk Strategy

- Striping Swap area:
 - helps overcome slow SCSI speeds
 - -3 to 4.5 Mbytes can be striped 2x or 3x
 - to effectively 10+ Mbytes/sec
 - useful even for IPI based disks
 - careful to separate swap disks from busy disks

Disk Strategy

- Striping Swap (contd):
 - I/O channel bandwidth is 50 Mbytes/sec
 - Effective to add more IOS channels
 - Initial swap setup costly, but drops thereafter
 - Also useful for checkpoint images via
 NQS

Overview

- The big picture:
 - J90 platforms can be tuned
 - Needs some effort to profile and effect changes
- Lessons from "bigger iron" can be also applied

Future

- Add lessons learned from other J90 configurations
- J90se and Scalable I/O systems

Where to get more information

- Training sessions:
 - UNICOS Performance & Tuning
- Books, articles, electronic sources:
 - UNICOS Tuning Guide, SR-2099
 - UNICOS System Admin Guide, SG2311
- Other sources:
 - FAQ in the works