Opportunity Scheduling:
An Unfair CPU Scheduler for UNICOS

Richard Klamann
Los Alamos National Laboratory

mail stop B269, Los Alamos, NM 87545
voice: (505)665-3181 fax: (505)667-0168
email: rmk@lanl.gov

ABSTRACT: Fair Share is the standard scheduling algorithm used for political resource
control on large, multi-user UNIX systems. Promising equity, Fair Share has instead
delivered frustration to its Los Alamos UNICOS users, who perceive misallocations of
interactive response within a system of unreasonable complexity.

This paper reviews the design of the Kay/Lauder Fair Share system, as well as its Cray
UNICOS implementation, and concludes that the underlying model is inappropriate for
interactive control. A new resource manager, Opportunity Scheduling, is then presented.
Salient features of the new scheduler include: (1) direct management of interactivity (or
“ computing opportunity”), (2) job prioritization within resource groups, (3) cooperative
memory scheduling, and (4) a simple, user-oriented interface.

The paper then contrasts Opportunity Scheduling with the batch system employed at Los
Alamos, where throughput and cycle allocation, rather than computing opportunity, are

paramount considerations. It concludes with anecdotal experiences under the system.

1. Introduction

Perhaps the most direct way to get an operating system
up and running on a mainframe supercomputer is to port
one designed for a smaller machine, scaling the table sizes
and clock rates accordingly. The results, however, will be
less than satisfying. Because mainframes are expensive,
their cost, and hence rights to the machine, are often split
between many different interest groups. And because
supercomputers provide coveted performance, their cycles
are valuable. This combination yields one new quantity in
abundance: competition.

Resource control, or rather the lack of it, is a well-
known shortcoming of the UNIX operating system. In the
relatively pastoral setting of a departmental workstation,
this flaw is a minor one. Users of departmental systems
are, by definition, cooperative; they share an interest in the
successful completion of the group’s work. If the group is
small, its members can easily administer its resources,
without help from the operating system, by simply talking
to one another. Should any user habitually flood the
departmental machine with unimportant work, his
supervisor can correct the situation, often by means more
effective than those available to any operating system.

In the dog-eat-dog world of mainframe computing,
where hundreds of individuals from dozens of independent
organizations share rights to a single machine, such
informal controls are absent; anonymous users have little
incentive to cooperate. Work viewed as “unimportant” to
one department may be “vital” to another. Upper level
management, the only administrative recourse for such
disputes, will simply not be bothered.

In this larger environment the operating system must
ensure equitable access to those parties that have
purchased rights to the machine. To provide this control,
Cray Research has incorporated the Fair Share CPU
Scheduler into its UNICOS operating system [1].

2. Fair ShareDesign

For most of its users, the Fair Share Scheduler is
associated with the share tree, its most visible data
structure. Share trees are a simple mechanism by which
successive layers of management can independently
subdivide computing resources (or anything else) amongst
their subordinates. This division is done by assigning
relative weights, or shares, to each node within the tree.
These weights are then normalized and propagated down
the tree, yielding an absolute allocation for each end user.

Share Tree
]]
Group X Group Y
20 (20%) 80 (80%)
I_I_I |
]]
Mary Ted Dept 1 Dept 2
40 (16%) 10 (4%) 75 (60%) 25 (20%)
I I_I_I
| | 1
Beth Bud Will Rick Chris
20 (30%) 10 (15%) 10 (vls%) 100 (10%) = 100 (10%)

Figure 1: Shares and resulting allocation

Once the share tree is established, Fair Share’'s mission
is to partition CPU cycles fairly. Kay and Lauder define a
fair scheduler as one that alocates resources to users
according to each individual's entitlement, where
entitlement is a function of both share and past usage [2].
Under such a scheme, if user A has consumed fewer cycles
than B, but was allotted an equal share of the machine,
user A is entitled to more cycles. To correct this
imbalance, a fair scheduler will prefer A's work to B's until
A’s recorded usage has caught up with B’s.

2.1. Fairness vs. Interactivity

This definition of fairness corresponds to our everyday
use of the term, making it both comfortable, and dangerous.
The phrase is dangerous because, in its common use, it
refers to storable, time-independent quantities. Fair share
applies comfortably to an inheritance, the size of a piece of
a pie, or to the water in a canteen on a long desert trek.
We do not speak of a driver, barreling down the interstate
at 80 MPH after enduring a wait in traffic, as getting his
fair share of speed; speed is not a storable, time-
independent quantity.

When applied to CPU cycles, fair share fosters the
illusion that CPU cycles can be stored in a bucket for later
consumption. Although users will readily acknowledge the
absurdity of this in extreme situations (once cannot obtain
a month’s worth of computing during a single week), they
continue to believe that cycles can be stored for a
“reasonable” period of time, typically days, and then
delivered to them on demand irrespective of other system
activity.

To make matters worse, Fair Share users tend to
believe that their interactivity -- the degree to which the
system responds to them -- is also being managed fairly.
They expect that each individual will receive the degree of
interactivity that he deserves, independent of the manner in
which others compute. These twin objectives,
responsiveness proportional to share, and fair cycle
consumption, are usually incompatible.

Consider the simple case of a single processor shared
equally by two users, A and B. The cycles delivered to A,
who logs on at noon, will depend a great deal upon whether
B is an early-bird or not. Should B computes all morning, A
will receive scheduling priority for the entire afternoon, or

until such time as he has consumed the same number of
cycles as B -- a haf-day's supply. But if B waits to
compute until noon, A and B will share the machine
equally throughout the remainder of the day, each receiving
a quarter-day's supply. Hence the afternoon cycles
delivered to A depend not only on A's usage history, but on
B's as well. Unless A is well acquainted with B's habits,
A's acquisition of afternoon computing is unpredictable.
This unpredictability of cycle delivery can bring about
acrisis for true interactive users. Suppose that early-bird B
has an important demonstration of some new interactive
software he is developing scheduled for the afternoon. If B
computes during the morning, he will saddle himself with
horrible system response time for the entire afternoon, or at
least until late-arriving A is no longer regarded as under-
serviced. B's optimal strategy, given that interactivity for
the afternoon is his prime concern, is to make sure that he
is not over-serviced relative to A. Under a strictly fair
scheduler, the only way for B to accomplish thisis to delay
his computing, idling the machine for the entire morning!

2.2 Timely Computing

The primary motivation for purchasing a supercomputer
is speed, or rate of cycle delivery. Supercomputers
customers are not simply interested in consuming cycles;
cycles can be gotten more economically from smaller
machines. Supercomputers are purchased by users who are
primarily interested in the rate at which cycles can be
acquired.

This is the basic reason why Fair Share misses the
mark for interactive users. Fair Share views the aggregate
number of consumed cycles, not the rate at which cycles
are consumed, as the end quantity to be managed. Instead
of providing interactive users with a mechanism for
predicting and controlling response time, Fair Share varies
the cycle delivery rate in complex and (to users) seemingly
unpredictable ways, in order to balance past consumption.
Rate of delivery, the supercomputer's raison d'étre, is made
subordinate to accumulated usage.

2.3 Adjustments to Fair Share

To be fair, Fair Share incorporates many features that
address the need for the timely delivery of computation.
The most basic adjustment, considered integral to the
scheduler, is to periodically decay the accumulated usage
for each user. By artificialy removing imbalances in
usage, Fair Share provides some measure of service to
everyone, irrespective of past consumption. Early-bird B,
assuming a rate of decay sufficiently large, can expect
some degree of interactivity after late-comer A arrives,
although the exact amount will depend on the details of B's
morning usage, other load on the machine, and factors yet
to be discussed.

But decay is unclean. Very large decay rates, those
that rapidly discard all past usage, contradict the primary
design goal of the scheduler -- fairness. He who arrives the
first'est with the most'est, wins. And small decay rates,
while more or less preserving the scheduler's fair behavior,
do little to mitigate its problems with interactive response.

Even with decay, imbalances in usage result in
situations that can only be solved by placing usage caps
and service minimums in the Fair Share algorithm. Usage
caps preserve the normalization step employed by the
scheduler at the cost of giving excessive cycles to low
priority processes. Service minimums prevent process
marooning by ensuring that all jobs, even those belonging
to over-serviced users, are given cycles. These kludges
both violate fairness, and worse, tend to encourage
destructive computing practices, such as task flooding (see
section 5).

2.4 Sharing a Surplus

Apart from issues of fairness, Fair Share must also
allocate to each user his proper share of the machine. This
is harder than it seems because groups, not individuals,
typically own rights to the system, yet consumption is
accounted to individuals. Whenever an individual fails to
submit sufficient work to consume his share, the cycles
delivered to his group will aso fall short of its allocation.
Should a group have large numbers of relatively dormant
user accounts (a common occurrence), the resources
allocated to that group will fall well short of its nominal
share.

Kay and Lauder address this flaw by assigning shares
to organizations, or resource groups, and then dynamically
subdividing these as their constituent users log in and out.
Since logged-in users are not necessarily active users, this
technique merely substitutes one problem for another. A
group feedback control added to UNICOS attempts to
correct this, but with little observed success [3].

Even where proper share can be calculated, Fair Share
can lose its ability to alocate resources accordingly
because it is exclusively a CPU scheduler. With no useful
coordination between the memory and CPU schedulers, as
memory demand exceeds available core, it is the memory
scheduler, and not Fair Share, that determines which
processes compute, and which do not.

3. Opportunity Scheduling

The constitution of the United States does not
guarantee happiness, only the right to pursue it. The
scheduler that we have integrated into the UNICOS
operating systems at Los Alamos follows this capitalistic
model -- it guarantees the opportunity to compute, not the
delivery of computation. Opportunity Scheduling differs
from Fair Share in three key respects:

* Past usage (individual or group) has no bearing on
present service,

e Resources are dlocated
individuals, and

to groups, not to

e CPU and memory scheduling are coordinated.

To first approximation, Opportunity Scheduling works
by simply dividing the physical machine into a set of
virtual minicomputers known as banks. Banks correspond

to entities that own rights to the machine, typically
departmental organizations. User processes are assigned to,
and consume resources exclusively from their department’s
bank; each bank is assigned a minimum ability to compute
commensurate with its rights to the machine. This ability
to compute, or computing opportunity, is independent of
both past usage and demand in other banks.

The scheduler does not, as Fair Share does, further
subdivide each bank's alocation amongst the users of that
bank. Instead, Opportunity Scheduling uses nice values to
prioritize computation within each bank. Users may adjust
the nice values of their processes either up or down; the
login default is 30; upper and lower bounds are 21 and 38.
Each nice decrement results in a 20% increase in service
relative to other processes within the bank. Nice
adjustments have no influence on the relative performance
of processes within a bank relative to those in other banks.

3.1 A Simple Example

With this simple start, let's see how Opportunity
Scheduling handles our earlier two-person example. Since
resources are alocated to banks, and not to individuals, we
must consider two cases:

First, suppose that users A and B are in separate banks
with identical allocations. Under Opportunity Scheduling,
each user will be given equa rights to the machine
throughout the afternoon. Past usage, for either user, plays
no role in scheduling the machine. Should A be absent
from the machine during the morning, he will not be
compensated later; compute resources are not “stored”.
Neither does an excessive load in any one bank affect the
resources given to another; the service accorded to B's
bank is independent of both the number of processes
spawned by A, and their nice values.

Now suppose that A and B compute within a single,
machine-wide bank. This situation is more complex.
Again, past usage plays no part in scheduling the machine,
however the composition of the current workload within the
bank, both in terms of number of processes and their nice
values, will determine the fraction of the machine
delivered to each user. If A runs two processes and B runs
one, each process running at nice 30, then A will receive
two-thirds of the machine, and B will receive one-third. If
B desires half of the machine, he can either run a second
process (yielding four active processes within the bank,
half of which belong to B), or, equivalently, he can lower
the nice value of his single process to 26, doubling its
scheduling weight.

Note that “compute resources’ are cited in the above
example, not simply CPU cycles. Under Opportunity
Scheduling, memory is alocated in a manner similar to
CPU dlocation. The recent time-weighted core
consumption for each bank is monitored; should swapping
become necessary, processes from banks that have
exceeded their memory allocations will be swapped to disk.
Within such a bank, high-nice (low priority) processes will
spend proportionally more time on the swap device than
their higher priority siblings.

Since users may spawn as many jobs as they wish
within their banks, and may assign nice values at will to
their own processes, the workload within a bank is
completely unregulated. This is both the greatest strength,
and the greatest weakness of Opportunity Scheduling. To
the extent that users are cooperative within their banks, this
scheme recreates the efficient, flexible, departmental-
machine scenario described in the introductory section. To
the extent that users within a bank are competitive,
anarchy within the bank results. The success of the
scheduler depends upon correctly partitioning the system’s
users into a small number of moderately sized banks, where
the users within each bank have an interest in their bank’s
work as a whole.

3.2 CPU Scheduling

The UNICOS CPU scheduler, with neither Fair Share
nor Opportunity Scheduling active, resembles that of other
UNIX systems [4]. A smal integer CPU priority is
associated with each process; the smaller the integer, the
better the priority. At each scheduling event (once per
second, or at state transitions) the scheduler ensures that
those runable processes with the smallest priorities are
connected to CPUs, round-robin scheduling processes with
equal priorities. The policy implemented by the scheduler
(fair, unfair, or whatever) is realized by the algorithm used
to calculate process priorities.

3.2.1 Priority Calculation

Under Opportunity Scheduling, recent connection
history is stored in a floating point penalty value associated
with each process. At each minor cycle (60 times a
second), all processes connected to CPUs at that moment
have their penalty values increased by a process-specific
penalty rate:

for all connected processes
Penal ty[p] += Rate[p];

CPU priorities are then recalculated at each major
cycle (once per second) by mapping the accumulated
penalties for all processes into the 0 to 999 range.

Penalty rates depend on current bank activity and nice
values, and are recalculated just before their use. They are
based largely on process and bank run weights calculated
at each major cycle:

WI[p] = NiceW[p]*state[p];

W[b] = sum(W[p]) for all

A process with a nice value of 30 is assigned a nice
weight of 1.0. Each incremental change in the nice value
alters this weight by 20%.

State factors are estimates of the probability that the
process will be runable in the near future:

p in b;

e 1.0if runable and in-core.
* 0.8 if asoft sleeper (non-interruptable).
e 0.2if runable and swapped.

* 0.0if a hard sleeper (waiting for terminal input,
death of a child, etc.).

Once the run weight sums are known, the penalty rate
for any process within that bank is given by:

Rate[p] = W[b]/(CPUs[b]*W[p]):

where the fractional number of CPUs assigned to a bank is
derived from the share tree. This definition of rate turns out
to be the inverse of the time that the process will be
scheduled to a CPU. For example, a process rate of 4.0
results in the scheduler connecting that process to a CPU
25% of the time during the upcoming interval. (Processes
with zero run weights -- those that were not expected to be
runable -- are given a penalty rate of 1.)

3.2.2 Multi-CPU Banks

On multi-CPU systems, individua banks will
frequently be granted allocations larger than a single CPU.
Should any process within such a bank receive a process
penalty rate of less than 1.0 (implying that it is to receive
more than 100% of a CPU, an impossible goal), the
scheduler readjusts the penalty calculations, effectively
moving this additional priority to other processes within the
bank. Rather than making a separate pass and increasing
the overhead of the scheduler, this test and corrective
recalculation is placed in the minor cycle:

if (Rate[p] && Rate[p] < 1.0) {
W[b] -= W[p];
CPUs[b] - -;
Rate[p] = 1.0;

}

Heuristically, this code removes both the high-priority
process's weight and a single CPU from the bank’'s
allocation, and assigns an entire CPU to the high-priority
process. The remaining processes within the bank then
share this additional allocation. This can lead to similar
levels of service for processes with different nice values
running within the same bank.

3.2.3 Penalty Decay

In order to preserve the exact relationship between
penalty rates and CPU allocations, accumulated penalties
are "decayed" by subtraction, rather than by small number
multiplication. At the end of each major clock cycle, the
largest penalty among the connected processes is
compared to a configurable maximum penalty limit, and if
greater, the difference is removed from all process
penalties during the next major cycle:

for all connected processes
Adj = max(Penalty[p])-Limt;

if Adj >0
for all processes
if (Penalty[p] > Adj)
Penal ty[p] -= Adj;
el se

Penal ty[p] = O;

“Decay” serves mainly to bound the preferential
treatment that newly initiated or recently awakened
processes receive under the scheduler.

3.3 Memory Scheduling

Cray machines do not employ virtual memory, hence
the UNICOS memory scheduler is a swapper: the entire
process image is moved between core memory and
secondary storage [4]. The algorithm for deciding which
processes are to be resident in core, and for what length of
time, is complex; parameters include nice value, residency
time, process size, fragmentation, process category (hog,
non-hog; batch, interactive), kernel locking, shared text,
and thrashing constraints. Other than nice, there are no
useful factors indicating the relative importance of work,
and since nice values are set at the discretion of
individuals independent of share, they are, in isolation, a
poor indication of job priority.

Opportunity Scheduling employs the UNICOS memory
scheduler with one major modification: the nice parameter
is replaced by a memory entitlement factor. A large
entitlement for a process raises its swap priority, and thus
its average core residency time. The entitlement factor
combines the relative importance of a process within its
bank, with the memory entitlement for that bank.

ME[p] = NiceW[p]*Me[b];

Each bank’s memory entitlement reflects the memory
demand of all processes within the bank relative to its
allocation. Absent nice considerations, a bank's
entitlement is simply that bank's core allocation divided by
the memory demand of all runable processes within the
bank. To prevent process nice values from having a
scheduling effect outside of their bank, the size of each
process is multiplied by its nice weight when calculating
the bank’s memory demand:

ME[b] = SysMent Al | oc[b] / Denand[b] ;

Demand[b] = sum(Ni ceW [p] *Meni p])
for all pin b;

This scheme results in smaller memory entitlements for
banks that over-subscribe their allocations, and larger
entitltements for those banks that live within their means.
When factored into swap priorities, it prevents any one
bank from crowding out the work of ancther.

3.4 User Interface

Perhaps the clearest indication that something is wrong
with the Fair Share model lies with the number and
complexity of the tools used to monitor its behavior. Not
counting commands that modify scheduling and share-tree
settings, Cray supports half a dozen Fair Share performance
monitoring utilities. The most basic utility, SHRVIEW,
produces ten distinct report types depending on invocation,
and by default dumps a flat table of floating point numbers
typically in excess of one hundred lines. Strangely, none of
these utilities detail the performance of individual
processes, typically the issue of most concern to users.

Under Opportunity Scheduling, the priority given to a
process is determined by (1) the relative share allocation
for the bank in which the process is running, and (2) the
number and nice values of processes running within the
bank. Hence there are just two performance monitoring
tools provided:

SYSVIEW shows the current share allocations and
usage for every active bank on the machine. Its purpose is
to assist managers in setting bank allocations, and to
monitor system load. In practice SYSVIEW is employed
by users to get an overview of scheduling on the system, to
gain confidence in the scheduler, and to lobby management
for larger alocations.

SYSVI EW rho 10 second sanpl e (Nov 27 16:05: 16)
Processors Core Menory

BANK SHARE ALLO REQ USE ALLO REQ USE

Root 8.0 11.6 8.0 115.5 125.7 105.8

PROD <10> 0.8 2.0 0.8 11.6 72.3 52.4

INT <85> 6.8 9.6 7.1 98.2 39.7 39.7

ac <10> 0.7 1.0 0.9 9.8 4.2 4.2

X <20> 1.4 51 2.2 19.6 15.9 15.9

DNA <25> 1.7 1.0 1.0 24.6 4.6 4.6

POOL <45> 3.1 2.5 2.5 44.2 14.9 14.9

T <50> 1.5 0.0 0.0 22.1 4.5 4.5

O/H <50> 1.5 2.5 2.5 22.1 10.4 10.4

*SYS < 5> 0.4 0.0 0.0 5.8 2.1 2.1

Figure 2: SYSVIEW output for rho, a YMP-8/128

BANKVIEW displays summary information for the
given bank, along with a detailed breakdown of all active
processes within the bank. Process level information
includes nice value, memory residence, and CPU
utilization. By isolating and displaying the load within a
single bank, BANKVIEW exposes any competition that
may be present. It isthen up to the bank members, through
informal, administrative means, to ensure that the number
of running jobs and their respective nice vaues are
appropriate for the bank.

BANKVI EW r ho 4 second sanpl e (Nov 27 16:15:19)

| Resource Bank: X |

ALLO REQ USE ALLO REQ USE

CPU: 1.4 5.0 2.3 MN 19.6 13.1 13.1
User PID TTY @CPU N M nutes Mwrds Conmand
roderic 40479 no R 35% 34 112. 6 3.4 vnR
rep 44362 p053 R 42% 34 58.6 1.3 lahetx0
rep 45319 p053 R 25% 34 43.9 1.6 ntnp
kammj 45608 p075 R 25% 34 38.9 4.2 xskru.1
ncnp 57136 p018 C 100% 30 0.4 1.0 ntnp
rep 26489 p053 S 0% 30 0.1 0.1 csh

Figure 3: BANKVIEW output for X-Division’s bank on rho

3.5 Redistribution of Share

Because Opportunity Scheduling allocates resources
directly to banks, rather than to individuals, idle users will
not skew the allocations given to groups. Even so, banks
will frequently have idle resources -- CPU and memory
allocations which exceed their current requirements.
Figure 2 (above) illustrates this situation. Consider for the
moment CPU allocations: banks T and SYS have no active
processes, yielding 1.5 and 0.4 idle CPUs respectively, and
the single processes running under DNA cannot consume
more than one of the 1.7 CPUs allocated to that bank.
Under Opportunity Scheduling, these surplus CPUs will be
redistributed to other banks with no future repayment
obligation. The question is, which banks should benefit
from this windfall?

In the original implementation, idle resources were
redistributed amongst all leaf banks (those with processes
attached) in proportion to their share allocations, without
regard for the hierarchical relationships implied by the
share tree. Using this flat scheme, and assuming the
situation above, surplus cycles from bank T would be
distributed throughout the tree, with banks OTH and X
benefiting similarly (having nearly equal CPU allocations).

The flat method was abandoned because it did not take
into account the political relationships implied by the share
tree. Management expected surplus cycles (as well as
memory) to be reallocated to nearest relatives: first to
siblings, then to uncles and cousins. Using a hierarchical
scheme, and again referencing figure 2, bank T's surplus
cycles should first be given to OTH, and only if OTH is
unable to consume them should the excess be distributed
further.

Hierarchical redistribution of CPUs is accomplished by
annotating the share tree with the current processor
demand, and then sorting the tree each cycle by relative
demand (number of active processes divided by CPU
allocation). A breadth-first pass is then made through the
tree, recovering surplus CPUs from the first nodes visited
and reassigning them to later siblings in proportion to share.
This procedure is repeated for core memory. (An early
version of Fair Share described in [5] uses hierarchical run
gueues to allocate CPUs equivalently.)

4. Production Computing

Although the focus of Opportunity Scheduling is on
interactive computing, 70% of the supercomputing cycles
at Los Alamos are consumed by production -- batch work
submitted to and controlled by PROD, a locally developed
batch control system. PROD consists of a central batch
scheduler, which runs on a dedicated workstation, and a set
of batch servers, one per Cray, which regulate the
production load for each machine. Users submit jobs,
adjust parameters, and receive status information for
current, pending, and recently completed work by running a
simple network interface to the central scheduler.

Production is the preferred way to run lengthy,
unattended work. At night and on weekends PROD

schedules the minimum number of jobs necessary to fully
utilize the hardware; once a job is selected for execution, it
runs at near real time. This strategy minimizes system
overhead, turnaround time, and loss from crashes. PROD
jobs also survive scheduled downtime via the UNICOS
checkpoint and restart mechanism. Reflecting these
efficiencies, production jobs are charged 85% of the
interactive rate, and are given off-shift scheduling priority.

Opportunity Scheduling partitions the machine between
interactive and production work by placing user processes
into one of two specia high-level banks: interactive
sessions run within departmental banks subordinate to
“INT”; production jobs are attached to “PROD”. The
fraction of the system given to each type of work is
determined by share assignments to these special banks. A
third bank, “SYS’, controls system overhead; daemons,
cron jobs, and login sessions for system administrators are
attached to this bank.

The production scheduler resembles Opportunity
Scheduling in its treatment of groups and their work. Each
job submitted to the PROD system is placed in a
production queue corresponding to the bank of the user that
submitted it. The bank members establish ahead of time a
job selection algorithm for their queue based on
departmental policies, including such factors as user-
assigned priority, time limit, and time in queue. Using this
algorithm, each queue chooses a candidate job. The
scheduler then calculates a service ratio for each queue
and master queue, based on the queue’'s recent usage,
allocation, and time limit of its chosen job. Whenever a
production slot opens up (i.e., the batch server for a worker
machine determines that there is room for another job), the
production scheduler runs the chosen job from the least
serviced queue belonging to the least serviced master
queue.

The PROD system resembles Fair Share, and differs
from Opportunity Scheduling, in that it factors the decayed
usage for each bank into its job selection algorithm. PROD
attempts to balance the usage for each bank against that
bank’s share of the machine, where usage includes both
interactive and batch computing, PROD monitors both.
Usage is decayed over 2-3 days. (Longer decay times
cause the turn-around time for production work to be
unacceptably dependent on the work habits of users in other
banks.)

PROD differs from Fair Share in that it balances
consumption between banks (both past and projected)
strictly by job selection, not by varying the rate of cycle
delivery. Fair Share's goal of continuously balancing
delivered cycles against user share will often maximize
both job turnaround time, and exposure to system failure.

5. Experiences

We were somewhat surprised by system performance
under Opportunity Scheduling. No scheduler can create
cycles out of thin air, the best it can do is to allocate
resources to the right processes. So we were not
disappointed when, at its introduction on a saturated

machine, Opportunity Scheduling seemed to have no
impact on the overall performance of the system. Yet after
several days, the responsiveness of the machines improved
markedly. We now understand why.

Fair Share sets an incentive trap for its users. New
users are given excellent response when entering a Fair
Share system because they are new, and thus have no
recent usage history. Only once they are significantly into
a computing project and have built up some usage will the
load on the machine become apparent to them. Loath to
discard the time already spent, users will tend to stay with
a project that they might otherwise never have initiated.
Meanwhile, more newcomers are enticed onto the system,
slowing response even more.

To make matters worse, frustrated users, stuck on the
system anyway, tend to submit even more work.
Surprisingly this helps, not hurts, the submitting user:
Users who run multiple jobs build up large usage histories
quickly, which, by design, dampen their ability to acquire
more cycles. However, since decay is multiplicative, these
larger usages are more quickly decayed. This decay boost
ensures that multiple jobs run simultaneously will,
collectively, acquire a larger share of the machine than if
they were run sequentially. While advantageous to the
individual user, when this practice is replicated, the
additional load brings the machine to its knees.

These incentive traps do not exist under Opportunity
Scheduling. Since usage history plays no part in
scheduling, users see the response they can expect right
from the beginning; they are less likely to initiate work that
cannot be completed in a timely fashion. Since users
consume resources exclusively from within their own
banks, the full impact of any additiona load is
immediately felt by, and isolated to, departmental
coworkers. Peer pressure from team members (or, lacking
that, the action of an immediate supervisor) provides
powerful motivation for each individual to compute within
the means available to his bank, and to use the production
system for non-interactive work.

6. Summary

Opportunity Scheduling differs from Fair Share in that
it treats computing as an opportunity, alocable to banks,
rather than as a right, alocable to individuals. Users
consume resources exclusively from their own bank, and
are in direct competition only with fellow bank members.
Neither an individual's past usage, nor that of his (or any
other) bank, has any bearing on present level of service.
Within banks, processes are prioritized by nice value,
which their owners may adjust either up or down. Bank
share and intra-bank process nice values alone determine
both CPU and memory scheduling priorities.

By discarding fairness and its requisite fiction, storable
cycles, Opportunity Scheduling is able to directly manage
the essence of interactive computing -- rate of cycle
delivery. By grouping users that share common rights to a
machine and alowing direct work prioritization within
these groups, Opportunity Scheduling gives management

more flexible control over its computing resource. And by
removing incentive traps, Opportunity Scheduling
encourages productive computing practices, improving the
overall performance of the systems under its control.

7. Implementation Notes and Acknowledgments

Opportunity Scheduling first made its appearance in
October 1995, and has been running all of LANL’'s
production PVP Cray hardware since April 1996. At this
writing the scheduler is running on two 8-processor Y MPs,
a J932, and a T-94. The modified kernel is capable of
using either Fair Share or Opportunity, switchable via a
runtime flag.

Thanks to Chris Brady of Cray Research, who visited
us in April 1995, prior to the conception of Opportunity
Scheduling, to explain the inner workings of Fair Share.
The memory scheduler mod is based on his work, and we
highly recommend his swapper simulation code to anyone
needing to manipulate memory scheduling (nschedv)
parameters.

Thanks to Manuel Vigil and Ray Miller who authorized
the manpower for the development effort; to Tom Klingner
for the insight given in many discussions; to Rick Light and
Don Olivas for tool building; to the entire systems team for
defining design requirements; and to Steve Finn and the
DNA (now DSWA) user community for agreeing to be the
first guinea pigs.

8. References

1 “Fair-share Scheduler”, UNICOS System Administration, SG-
2113, Cray Research Inc.

2 J Kay and P. Lauder, “A Fair Share Scheduler”, Comm ACM,
Vol 31 No. 1 (Jan. 1988) pp. 44-56

3 C. Eveitt and T. Jones, “The UNICOS Fair Share Scheduler
as a Feedback Control System”, CUG 1995 Fall Proceedings

4. J. Bach, The Design of the UNIX Operating System, Prentice-
Hall, Englewood Cliffs, N.J., 1986

5. Henry, “The Fair Share Scheduler”, Bell Systems Tech. J., Vol
63 No. 8 (Oct. 1984) pp. 1845-1857

(Last update: 4/30/97)

