
J90 cluster scheduling using NQE 3

Eric Lebeau, RENAULT Automobiles, 92500 Rueil-Malmaison, FRANCE
Phone: (33) 1 47774854, Fax: (33) 1 47773459, Email: eric.lebeau@ctr.renault.fr

ABSTRACT:RENAULT’s scientific computing center is made of several specialized servers, running different batch
management products. Mid 96, RENAULT decided to buy a second crash simulation machine to be added to the existing CRAY
J916 system ; this system turned out to be a CRAY J932. As we wanted the two machines to operate in cluster mode and in an
attempt to unify the HPC center’s batch environment, we decided to look for a new batch scheduling product. The NQE 3
environment was chosen as it could meet our requirements, but with lots of developements. The J90 cluster was brought into
operation in December 96 and works fine. However, some questions have to be answered before this solution can be extended to
the whole computing center.

1 The HPC facilities at RENAULT

1.1 The scientific computing architecture

RENAULT's scientific computing architecture is based
on central shared HPC resources located in a single computing
center ; engineers are equipped with workstations (mainly SGI
and SUN) on a one to one basis. All graphical interactive tasks,
like meshing and data visualization, are done on these
workstations. Simple simulation programs are also run on the
user workstation, while all time-consuming intensive
calculations are submitted in batch mode to the central
computers.

1.2 Simulations made

The design of a car calls for many different kinds of
simulations, among which:

. static and dynamic structure analysis

. crash (against a barrier, car to car ...)

. metal stamping

. kinematics

. engine cooling

. external aerodynamics

. engine internal flows

. combustion

. electro-magnetic compatibility

...
All complex simulations are made with commercial

Central file-server
STK 9360

4x4490 + 2xSD3
CRAY

C94/4-256

NSC
Research

server

DEC 8200
130 GB

 HIPPI
Switch

NSC ps32

CISCO
C5000

Crash server

CRAY
J98/4-1024

SUN SS5
ACSLS

Scalar server

Access
gateway Archiving

server

HP 600FX
DON

SUN E150SUN SS1000

Switched 10 Mb Ethernet

RENAULT
TCP/IP

Network

10 Mb/s
100 Mb/s
800 Mb/s

 CRAY
J932/20-4096

20 GB

 CRAY
J916/12-1024

26 GB

86 GB

8 GB

Supercomputer

2 x IBM RS/6000-590

8 GB 30 GB

20 GB

4 GB

applications like NASTRAN, ABAQUS, RADIOSS,
STAR_CD, FLUENT ...

1.3 RENAULT's HPC center

The increasing demand for high performance computing
resources has induced RENAULT's HPC architecture to evolve
from an all-purpose big supercomputer to specialized computer
servers, in order to achieve the best price/performance ratio
depending on the application profile:

. vectorized and i/o intensive: CRAY C90

. vector parallel: CRAY J90

. scalar sequential: IBM RS6000
 DEC 8200

. scalar parallel: to be decided
A dedicated J98 and its WolfCreek STORAGETEK silo

with 3490 and SD3 drivers under control of DMF acts as
central file-server for restart files and NASTRAN modal bases.

An archiving service is also provided to the end users.

2 The "unified batch management" project

2.1 The batch environment

The HPC facilities are accessed in batch mode, except
for the DEC server which is dedicated to research projects, and
run 24h/24, 7d/7 unattended during nights and week-ends.

At the beginning of 1996, we had two batch products to
manage our systems:

. CRAY/NQS for the C94 and the J916, with network
access through NQE-R (subset of NQE 1 equivalent to the
former RQS product)

. IBM/LOADLEVELER for the IBM cluster, introduced
for its central queuing and load balancing capabilities.

NQS
batch
queues

Pending queues
Ex ecution

Ex ecution

qsub -q pipe1

qsub -q pipe2

llsubmit

Submission
shell script

p ipe1

p ipe2

NQE pipe queues

Loadleveler manager

IBM RS6000

IBM RS6000

CRAY C94

CRAY J916

NQS
batch
queues

Figure 1: mid 96 batch configuration
All batch commands have been packaged with shell

scripts in such a way that this disparity was transparent to the
user:

. batch submission: static routing to one system or
another depending on the application specified, NQS to
LOADLEVELER resource definition and options transcoding,
default job resources attribution:

. batch deletion: sending the proper order to the proper
system

. job status: a single job status display is built every
minute and can be accessed via a simple graphical interface
with filter capabilities

. job outputs: all outputs return to the same place and
have similar names

2.2 The project objectives

In spring 96, we decided to start a project on the batch
management topic ; the main objectives were:

. to unify our batch environment on one single product,
so as to get rid of all the developments previously described
and to enhance user functionalities by taking advantage of the
native client interface of the batch product

. to prepare to bring into operation the second crash
simulation machine which was going to be added to the
existing CRAY J916 before the end of 1996.

2.3 Functional specifications

First, we established a list of specifications for the
"ideal" batch management system, among which:

. support of all major HPC platforms

. basic batch functionalities: ability to define several
queues, resources limits enforcement (cpu, memory, disk ...),
job tracking, including a detailled status of running jobs (cpu
and memory actually used ...)

. centralized queuing so as to achieve efficient load
balancing between different execution servers

. explicit dependency between submitted jobs

. advanced static routing: customizable algorithm for
routing a job to a set of queues depending on the resources
needed (including site specific resources like an application)

. fair-share batch scheduling: take into account at least
the time in queue and the past resources usage of the user when
ordering jobs within a queue (not simple FIFO !)

. continuous operation when an execution server in a
cluster fails: all jobs should be requeued and run on the
remaining servers

. resources conversion depending on the execution server
(especially for the cpu unit)

. scheduling master server and submission server
securization

. customizable graphical and line-mode user interfaces

2.4 Products short list

At the time the project started, we didn't know what the
second crash machine was going to be, but we already knew
that the batch product would have to be implemented on a
UNICOS system : this constraint reduced the short list to 2
products : NQE 3 from CRAY and LSF from Platform
Computing.

The study of NQE 3 product specifications and the on-
site test showed it didn't perform many required functionalities
; a further study with CRAY France demonstrated that almost

everything we needed could be implemented in the product
using the new database mode and with some developments.

The tests of LSF planned in the summer of 1996 didn't
go far as we had some difficulties in obtaining the UNICOS
client from our french distributor and were not able to make it
work correctly, neither in native mode nor in NQS
interoperability mode (we eventually found out that it had not
been ported to UNICOS 9 at this moment).

The final choice for the second crash machine was made
in september for a CRAY J932, and we decided to bring the
cluster into production with NQE 3, all developments beeing
subcontracted to CRAY France.

3 J90s clusterization with NQE 3

3.1 NQE 3 technical architecture

Version 3 of NQE implements a very important new
feature: the database mecanism. With the previous versions of
NQE, jobs were routed at submission time to an execution
server ; the NLB provided a way to choose the "best"
destination base on the server's load, but job queues were on
the execution server itself, in a classical NQS mode.

When using the new database mecanism, jobs are
inserted in the base at submission time ; a program, the
scheduler, examines the database at regular intervals to check if
jobs may be executed.

When the scheduler decides that a job may be executed,
it sends the job to a process named LWS on the chosen
execution server. The LWS interacts with NQS in order to
controls job execution : it dispatches the job to NQS, returns
the job status to the central database, and takes care of special
events like job signalization/deletion or LWS shutdown.

The default mode for sending jobs to NQS is immediate
execution (qmgr schedule now), which means that NQS's
function is mainly to enforce resources limits. It is also
possible to allow queuing on the execution server by changing
a parameter on the LWS. We have not tested this possibility.

Another process on the execution server, the collector,
periodically sends back to the NLB server detailled information
about running jobs (cpu and memory used ...) and global load
information ; it can be customized to collect whatever
information is needed.

J916 platane

J932 peuplier

msqld
cqsub -d nqedb

schedulermonitor
lws.platane

lws.peuplier

NQS batch queues

NQE
Database

coll604

n lbserver

coll604

nqebatch

NQS batch queues

nqebatch
job flow

(1)

(2)

(3)
(4)

load in formation

NQE master server

Figure 2: NQE 3 technical architecture

NQE 3 also provides a set of graphical user commands
for job submission and tracking. This environment is very
open: the scheduler and the LWS are written in tcl, which is an
interpreted command langage, and the client programs are
written in tk/tcl, a graphical extension to tcl. The collector can
be customized by creating new objects that the site wants to
monitor, and the algorithm used by the NLB to give a list a
suitable LWS for a job may be defined by the administration
through custom NLB policies.

3.2 Implementation at RENAULT

NQE 3 comes with a very simple default scheduler only
capable of sending jobs to execution servers in a round-robin
fashion. Many of the functionality that we absolutely needed to
start the J932 in cluster mode with the existing J916 had to be
implemented in the scheduler. We describe the main ones.

3.2.1. Queues and global constraints

Having a central queuing mecanism in NQE 3 implies
that all treatments related to queues and constraints must be
done by the scheduler. Queue allocation is done at submission
time depending on the cpu and memory resources needed by
the job ; the job "enters" the first queue that fits its
requirements or falls in a "Failed" state if none was found. At
every pass, the scheduler checks all contrainsts to see if a job
can be started. As every constraint must be manually coded in
the scheduler, we were content with implementing only the
minimum we needed : queue run limit per LWS, global and per
user run limit per LWS.

3.2.2. Pipe queues

The J90 cluster runs both parallel and sequential
applications, mixes very long simulations with short
preparation jobs, and is shared by two groups of users. As we
didn't want to multiply the number of queues, we decided to
implement a pipe queue mecanism. The user may specify a
pipe queue when submitting the job using a special argument "-
la pipe=xxxx" ; for each pipe queue argument, there is an array
of eligible destination queues to which the scheduler restrains
its choice when the job enters the database.

3.2.3. Job dependency

The so-called job dependency mecanism implemented in
NQE did not satisfy our need because either the dependency is
checked before job submission and then we loose reliability
(will the user workstation be able to submit the job when time
comes) and equity (the time in queue is accounted for only
when the job is actually submitted), or the job has to be
running to check if it may start (!). That's why we implemented
real interdependency between submitted jobs : the user may
indicate using an argument "-la waitfor=xxxx" that this job
can't be started before the specified job has finished. The
checking is done by the scheduler during the scheduling pass.

3.2.4. Fair-share batch scheduling

Users were very satisfied when CRAY implemented the
fair-share batch scheduling in NQS because it broke the static
FIFO logic which allowed a single user to monopolize
resources by simply submitting many jobs at a time and
replaced it with a fairer system taking into account the time in
queue and also the past usage of the resources by the user. We
had to have the same kind of dynamic queue reordering with
NQE 3, and it was implemented in the scheduler : at each
scheduling pass, the scheduler reorders the jobs in each queue
using the same algorithm as NQS for priority and usage
decrementing computations. Note that it only takes into
account the cpu used by finished jobs because this information
is documented by the default NQE mecanisms.

3.2.5. Job priorization

Another very usefull feature was also implemented in
the scheduler: the ability for the administrator to prioritize a job
by putting it at the top of the queue (equivalent to the "qmgr
schedule first" command) or by forcing immediate execution
on a given LWS (equivalent to the "qmgr schedule now"
command).

3.2.6. Central hold/release

A central hold/release had to be implemented in the
scheduler so that the administrator can force pending jobs to be
held in queue and running jobs to be checkpointed (an the
associated release commands) ; unfortunately, there is no
"hold" state in NQE 3: this state had to be implemented using a
special scheduler variable and cannot be seen by the user. Note
also that this function implied some development in the LWS
program as it is the LWS that communicates with NQS and
asks for hold/release. Nevertheless, if a job is held directly on
the execution server using a NQS "qmgr hold request"
command, then the scheduler is not aware of it and the job is
still considered as running.

3.2.7. Job tracking

An external command written in tcl queries the NLB and
the database every minute and constructs a NQS-like detailled
display of jobs including cpu and memory required/used and
site-specific informations like the queue and job dependency.

3.3 The missing functionalities

3.3.1. Administration interface

Some administration commands are still missing in our
implementation, especially regarding dynamic queue definition

and modification ; defining a new queue implies a modification
in the scheduler and, of course, a restart.

3.3.2. Continuous operation when a server fails

NQE continuously monitors its execution servers and
provides a mecanism by which when an execution server fails
(customizable timeout), all jobs running on this LWS are
requeued in the database (ie change state from "submitted" to
"pending") and are eligible for running on another LWS. We
have not tested this functionality, but it seems that the problem
of canceling these jobs when the LWS restarts has not been
properly dealt with.

3.3.3. Master server protection

It is not possible at present time to secure the NQE
database ; therefore, the only way of securing the NQE master
server is to have a fault tolerant machine configuration.

3.3.4. NLB policies

In our configuration ,batch queues are statically defined
in the scheduler in a NQS-like way ; Nevertheless, everything
is ready for using NLB load informations in order to route jobs
to the less loaded system, or even to dynamically adjust queues
run limit depending on execution servers loads.

3.4 User experience

The J90 cluster was brought into production using NQE
3 on December 2nd. Our configuration is made up of 3 pipe
queues and 7 batch queues ; all jobs are run in a single NQS
batch queue and there is no queuing on the execution server.
We run an average of 4000 jobs/month.

In the first months of operation, we experienced 2
problems:

. a bug in the product that caused the NQE environment
to grow in memory on the master server (SUN SS1000) and on
the execution servers ; we had to restart the scheduler every
week to free memory and avoid memory shortage on the
master server (nevertheless, it happened once, causing the
scheduler to abort. This bug is now fixed by CRAY.

. the job tracking command was very slow (over 50
seconds) and very cpu-time consuming ; the problem was fixed
by changing the way this program queried the NQE database,
and the command now takes about 10 seconds.

There still seems to be a remaining problem on the
hold/release mecanism (which has been recently brought into
production) that causes the scheduler to loop in some special
circumstances ; this bug happened twice on our site and is
being analysed by CRAY France.

Apart from that, we had no major trouble in 6 months
which proves that NQE 3 is a very robust and reliable
environment.

4 Conclusion

NQE 3 is a very robust and reliable product ; the J90
clustering project demonstrated that it is very open, since many
functionalities we needed could be implemented without great
difficulty.

NQS
batch
queues

Pending queues
Execution

qsub -q pipe1

qsub -q nqedb

llsubmit

Submission
shell script

p ipe1

NQE pipe queue

Loadleveler manager

IBM RS6000

IBM RS6000

CRAY C94

CRAY J916

Execution

Pending queues Execution
NQS

CRAY J932

Execution
NQS

NQE database

Figure 3: present batch configuration

However, we have not decided yet to extend this
environment to the whole computer base for different reasons.

4.1 Product scalability

We are concerned about the product's behaviour if the
activity grows too much ; the HPC center runs more than
20000 jobs/month, which is at least 5 times more than the J90
cluster activity :

. the scheduler is written in interpreted tcl and must
examine all jobs in the database at each scheduling pass,

. the database itself will significantly grow, and
database queries may become very long, with unknown
possible consequences on NQE

There is another uncertainty about the load induced by
NQC queries to the database: about 100 users would
simultaneously want to have a status display, refreshed every
minute or so, to monitor their jobs. We today avoid this
problem by constructing every minute a single image of the
jobs submitted and put it into a file that is accessed by users
commands via NFS. But if we want to take advantage of the
capabilities of the NQC native interface, all these requests will
be direct queries to the NQE database.

4.2 Scheduler complexity

The scheduler may become a very complex program if
we try to port all the NQS constraints capabilities which are
used in an all-purpose batch configuration like the one we have
on the CRAY C94. As a matter of fact, for the J90 cluster
project we only implemented a few batch the queues with basic
constraints, and it still required about 2000 lines of
development. But NQS also offers constraints on memory, disk
space and PEs, and the additional level of "complexes"
(constraints on a group of queues). Coding all these constraints
and all connected administration commands seems very
complicated and would bring about reliability and probably
performance problems.

4.3 Support and maintenance

Last but not least, given the extent of developments
needed to build a NQE solution using the database mecanism,
we face the problem of the maintenance strategy : should the
customer develop and maintain its solution, or should CRAY
support teams take on this task, as for us ? And in this case,
how can we be sure that we will have an efficient support on
this strategic service for a HPC center ?

