J90 SuperCluster - A Progress Report

Bruno Loepfe, Computing Services, ETH, Zurich Switzerland
Dr. Svend Knudsen, Computing Services, ETH, Zurich Switzerland
Dr. Rudy Wilopo, SGI/CRI, Switzerland

ABSTRACT: SGI/CRI and ETHZ have reached an agreement to jointly implement a cluster.
The project SuperCluster Devel opment/Operation is part of the agreement A SuperCluster
should give the user a Single System View and provide extra value beyond just providing the

computing capacity.

The project Super Cluster J90

History

The project SuperCluster J90 is part of a co-operation
agreement between SGI/CRI and ETHZ. The goal of this
project is to implement a Single System View (SSV) on a
cluster of computers. When users work on a cluster equipped
with SSV, they should get the look-and-feel of working on a
single system. From the implementation point of view, SSV is
a collection of services provided by the machines in the
cluster. As far as possible these services should not be bound
to a particular machine. Of course, certain services rely on a
particular piece of hardware. Tape-services, for example, need
access to some kind of tape-drives; but in most cases not all
machines in a cluster are directly connected. Apart from
dependencies like these, the cluster should not rely on a
particular machine providing any given service.

\

1000
100
i
1000

0000
0000
0000
nooo
0000
0000
0000
nooo

OO

AN

/a,

a7
atain,

)

NN

N
QNN

AN

IR
W\
AN

Network
Disk ND-40
90 GByte

Figure1: Cluster with 4 J90, HIPPI-switch and networ k-disk

The advantages for the users are twofold. First: they don't
need to care which machinein a cluster they should addressin
order to use a particular service. Second: hardware or software
failures don't lead to a loss of all services like on a single
machine. Instead, the SuperCluster should be able to continue
uninterrupted operations for unaffected services. After a
hopefully short amount of time to recover a lost service, the
SuperCluster should provide full functionality again, although
perhaps with a certain loss of performance.

Single System I mage

Single-System-Image (SSI) is a superset of SSV. The
former provides additional functionality like process
migration. As a consequence, SSl is restricted to homogeneous
clusters, while with afew restrictions, SSV can be operated on
heterogeneous clusters as well..

Basics of Single System View
We identified the following basic topics for SSV:

¢ clusterwide transparent file access
¢ job-distribution (batch and interactive)
¢ administration / accounting / operations

Of course some of these topics are strongly correlated. For
example: should you encounter problems with file access
during operations, proper emergency procedures are needed to
fix them.

Clusterwide Transparent File-Access

What we intended to do

For reasons of transparency and resiliency we decided to
provide clusterwide file-access with the Shared Filesystem
(SFS), cached by the Distributed Filesystem (DFS). On a
dedicated system running one copy of our I/O-benchmark, we
saw 75% or more of the performance of an NC1-filesystem. It
turned out, however, that this combination doesn't perfom well
on a loaded system. We ran 12 copies of the I/O-program



simultaneously (on one machine as well as on different
machines) and found a satisfactory transfer-rate of 10-40
MBytes/sec (depending on the size of the 1/O-requests).
However, this is the plain transfer-rate only. If we take into
account the time for opening and closing the files as well, the
average transfer-rate drops to unacceptable 15 KBytes/sec in
our tests. In addition we found that it takes up to 7 minutes to
delete a single file. Consequently, we abandoned SFS and
started to look for alternatives.

Alternatives

Our HIPPI-disk gives us the unique capability of
mounting its file-systems on any machine in the cluster. Of
course, a particular file-system must be mounted on one
machine only. It is our decision, on which machine we mount
aparticular filesystem. Therefore, we are able to distribute the
filesystems over all machinesin the cluster and even to change
this distribution dynamically. We just need away to export the
locally mounted filesystems to other machines in the cluster.
The choices for exporting are NFS and DFS. We decided to
use DFS because of itslocal caching capabilities and its ease
of moving exporters to other machines. Resiliency, however,
will suffer compared to SFS: we will lose all jobs/sessions in
the cluster which try to access a particular filesystem
throughout the duration of its move. SGI/CRI is aware of this
problem and there are someideas to solveit.

Actual state

The clusterwide file access is still implemented via NFS
from one central exporter. The next step will be to distribute
the NFS-exporters over all machines. For the switch to DFS
we have to wait until DCE-ticket-forwarding is available in
NQE. Independent of the method for accessing files, DMF is
available on all machines. We replaced the commands dmget
and dmput with our own versions. These commands simply
contact the machine exporting the filesystem, perform the
operation there, and wait for the local DM F-daemon to finish
the operation. This, of course, requires that machines
exporting DMF-filesystems be equipped with tape-drives.
Additionally, the layout of the filesystems has to be identical
on al machinesin the cluster, but thisis already mandatory for
clusterwide file-access. The reason for not running distributed
DMF is that it would require an SFS-based filesystem for
storing its databases.

Job-Distribution (batch and interactive)

What we intended to do

We thought this would be the easiest of all topics: we
didn't intend to do anything at all. Interactive sessions don't
contribute considerably to our overall load, so we don't really
care about distributing them. For batch-jobs, we had thought
we only needed to start NQE to benefit from load-balancing.
We discovered, however, that for the purposes of the
SuperCluster, load-balancing via NLB is not sufficient. The
SuperCluster is a collection of services running on different
machines providing a Single-System-View to itsusers. NLB is
basically a linear combination of thresholds and other values.
We found that most of the time identifying the hosts providing

a particular service requires more flexibility than linear
functions are able to provide.

What we did instead

NQE gives you the possibility of writing your own
scheduler. In thisway the entire process of making decisionsis
under your control. Additionally, the scheduler is written in a
programming language. Therefore you have far more
functions available than just linear ones. The documentation,
however, is still in an early state. So SGI/CRI sent two NQE-
experts to Zurich for a week to help us design our own
scheduler. They left us a framework strongly based on what
we told them we would like to have. For example: we moved
all the checking and enforcing of job limits, as well as the
inter-queue-scheduling and intra-queue-scheduling, from the
local NQS-queues to the NQE-scheduler. Another example:
the default-scheduler of NQE would accept a job with the -a-
parameter and schedule it for an appropriate LWS. There, the
job would wait in the local queue until its execution time. We
let thisjob wait in the scheduler instead, so that the scheduling
decision is based on the state of the cluster at the time the job
is intended to start, instead of at the time the job was
submitted. Our scheduler isn't finished yet; the task is
considerably more difficult than we expected.

Actual state

While we are waiting for a version of NQE with DCE-
ticket-forwarding, we are slowly upgrading our 70+ remote-
NQS-stations with NQE. As soon as the load-balancing is
ready, we will start to distribute the NFS-exporters over the
cluster. It makes little sense to do this before load-balancing is
running. It would just slow down the access to filesystems
residing on other machines.

Furthermore, we are supposed to measure the quality of
the scheduler. Here | have to confess that we don't have the
dlightest idea how this should or could be done. At this point
it's unclear, what an appropriate metric should look like.

Another unsolved problem concerns MPI/PVM and NQE.
The spawning of processes from a job to other machines
defeats the purpose of the NQE-scheduler. We therefore need
away to have this creation of remote-processes under control
of NQE.

Administration / Accounting / Oper ations

We didn't do anything about accounting. Much to our
own surprise, we spent a lot of time on administration and
even more so on operations.

Administration

Here we faced a very boring situation: whenever users
were forced to change the password for their accounts, either
they did it on the production machine and had the system staff
copying the UDB to the other machines, or they changed the
password on each of the four machines. In both cases they also
had to change the DCE-password. Meanwhile we provided a
program named cpasswd. This changes the password on all
machines in the cluster, as well as that for the DCE-account.
Should any machine in the cluster be unready to accept a
change, this change will be buffered on the machine which



issued the command. During the boot-process, each machine
asks all other machines whether there are any buffered
changes pending. This way we ensure the consistency of the
passwords for al acounts everywhere in the cluster including
DCE.

Operations
Most of the time we spent concerned operations. To give
some examples:

* as mentioned before, we intend to distribute our
filesystem-exporters over the cluster. Not all machines are
equipped with tape-drives, however. So how do we
dump/restore filesystems exported from machines not
equipped with tape-drives ?

¢ for some reason a particular machine has to be taken out
of operation. Of course, we don't want to lose the
filesystems it has exported. How do we move these
filesystems and their exporters from one machine to
another without losing too many jobs during this process ?

e one of the machines is equipped with four tape-drives.
How do we connect these drives to another machine if the
previous tape-server goes down ?

The first example was relatively easy to solve: we
extended our backup procedure with the ability to find the
exporter for a given filesystem. It takes a list of filesystems,
figures out which machines to ask for a dump, and manages
the VSN-numbers of the cartridges. One sub-problem isn't
solved yet: the program dump stores a timestamp for each
filesystem it dumps in the file /etc/dumpdates. Whenever we
need to move an exporters, we therefore need to move the
corresponding contents of /etc/dumpdates.

The program is currently based on sockets, but we will
very likely rewrite it using MPI. The handling of
communicationsin MPI is much easier than using sockets.

The other two examples mentioned above, like most of
the problems in operations, fall into the following general
category:

* How do we gracefully move a service from the machine
originally providing it to another machine, and how do we
move it back later ?

Unfortunately we found in most cases: thisis impossible,
at least when you insist in the word gracefully. Neither NFS
nor DFS on Cray machines provide means to move exporters
to other machines during operations. In the case of NFS you
might even need to kill jobs on a machine if you have to re-
import a filesystem from a new exporter. With DFS you are at
least able to move exporters without being hindered by Stale
File Handles, but the procedure is quite complicated. DFS
provides the possibility to move exporters gracefully.
However, this requires the use of the Enhanced LFS for
DCE/DFS which is not implemented for Cray machines.

Another example is NQE: its master resides on a
particular machine but no provisions have been made to move
it gracefully to another. We managed to find away to moveit,

but it requires that the NQE-database resides on its own
filesystem (in our case located on the Hippi-disk) so that we
are able to mount this filesystem on another machine. The
tape-drives are even worse: the only way we could find to
connect them automatically to another machine is a two-way
SCSl-switch. The worst case happens when we need to move
the tape-server. We then also need to move DMF, as well as
the exported filesystems, which are typically DMF-
filesystems. We did it once manually, step by step. The final
goal, however, is to have this move triggered by our externa
watchdog, should it detect the loss of the tape-server. Thisis
not implemented yet.

Wish-List

Several of the problems mentioned before led us to the
following list of wishesto SGI/CRI:

1. make sure services are not bound to a particular machine
2. provide better integration of the various SGI/CRI-
software-packages.

This list is fortunately very short. Nevertheless these two
points are essential for SuperClusters as well as for regular
clusters. The motivation for wish number 1 has been included
previoudly. It is possible to achieve this goal but you have to
take care of it very early in the design phase of a software-
package. Our clusterwide password-changer, for example, is
not bound to a particular machine. It doesn't need special
hardware, so it can run everywhere. It has been designed to
deliver this functionality.

The reasons for number 2 are the various problems we
have encountered so far. For example: none of the software
packagesis able to cooperate with DCE. Thisisareal problem
for NQE and MPT: both lack the forwarding of DCE-ticketsto
their child-processes. MPT and NQE don't cooperate either:
the creation of new processes by MPT is not under control of
NQE and accordingly the scheduler of NQE is unable to
consider new processes when making its decisions.

Conclusion

Based on our experiences so far we think that SSV is an
excellent vehicle for combining computers into a throughput-
delivering device. By writing an NQE-scheduler, one has
sufficient control over the process of distributing jobs to take
full advantage of all the features the machines in the cluster
provide. These features can be enhanced dynamically by
adding new services (hardware/software) with little impact on
the users.



