
Copyright 1997 Cray Research, Inc. CUG 1997 Spring Proceedings 71

Web Based Tools For Visualizing Supercomputer Results

Nancy Rowe, Cray Research, A Silicon Graphics Company,
Eagan, Minnesota USA

ABSTRACT: The World Wide Web has become a familiar interface for many computer
users. By developing a web based interface for running animations and displaying results we
have created an environment that allows scientists to view results of their data without
having to learn a new visualization tool.

Introduction

The World Wide Web provides a good platform for quickly
building a user interface. The Web is fun, exciting and easy
to use, and everybody is using it or wants to try it. With the
tools currently available exciting web pages can be created
in minutes and more tools are constantly being created to
make web development easier. Although the Web was
designed for use across networks and for interaction with
other sites, in the following applications we generally ignore
those features and focus on the ability to quickly create an
easy to use, dynamic graphical user interface. Because
people feel comfortable with the Web, they feel comfortable
with an interface built on the Web and this immediate
familiarity with the interface makes tools easier to use. We
use web pages to build an interface to existing software.
The following two cases show how we have used the World
Wide Web to make visualization easier.

Case 1 uses the Web to provide a graphical user interface so
that non-technical people can give technical demonstrations
with easy access to supporting data. Case 2 uses the Web to
generate batch graphics for very large data sets that are
difficult to view interactively.

 Case 1 Using a web browser as a quick and easy to use
interface to tools

Background
In the Applications Department at Cray Research

demonstrations are a frequent and necessary occurrence.
The audience for demonstrations varies from local grade
school students to American and foreign dignitaries.
Generally we are requested to show a broad spectrum of
demonstrations. We have experts in a variety of areas, such
as crash simulation, environmental science, chemistry, and
computational fluid dynamics. Usually only the expert in
each field has the knowledge of the current work being

done, the ability to easily demonstrate and discuss a
computer analysis, and the ability to provide information
about related work and to provide informed answers to
questions. Organizing a group of knowledgeable people
from a variety of areas of expertise is often difficult. The
experts are not always readily available at the time of the
demonstration, and requiring experts to do demonstrations
distracts them from furthering their work. If the experts are
doing demonstrations they can’t be doing science. By
creating a demonstration that shows a variety of scientific
disciplines, provides links to frequently asked questions, but
can be run by a someone without experience in the
discipline being demonstrated we can simplify the
demonstration process.

Problem: Experts required to give too many demonstr
ations.

Solution: Make it asy for non-expert to give
demonstrations

Goal
Our goal was to create a simple demonstration suite that

was easy to use. We set a target of having non-technical
people be able to give the demonstrations. The idea was
that whoever served as the focal point for making
demonstration arrangements would be able to give the
demonstration. People could make commitments based on
their own schedule rather than having to coordinate the
schedules of the experts for each field. We also wanted an
interface that was intuitive. The user should be able the
give a demonstration by following the instructions in the
main menu. For anyone accustomed to using a web
browser no practice would be required.

Frequently, questions are asked about specifics of a
demonstration. We wanted the demonstrator to be able to
provide technical demonstrations and answer questions
outside of his area of expertise. Information about the
demonstration as well as additional supporting information
should be easily available to the demonstrator.

Copyright 1997 Cray Research, Inc. CUG 1997 Spring Proceedings 72

We began this project prior to SGI’s acquisition of Cray
Research. At that time one of our goals for this
demonstration suite was to limit hardware dependencies to
Cray machines. We also wanted run part of the
demonstration on Cray systems. We wanted the audience to
actually be able to see a Cray system being used, rather than
just hear someone talk about a Cray system. One stumbling
block is that many analyses that require Cray compute
power take so long to compute that they are not suitable for
demonstration purposes. Our goal then was to inform the
audience of how long analyses take on Cray systems and to
use the Cray in other ways so that an actual Cray system
was still part of the demonstration.

Components
This demonstration used the Web to build a user

interface around existing demonstration software. Since
animation is a big help in creating an exciting
demonstration, our existing system displayed animations of
results from analyses that had been run on Cray systems.
The animation system (Image 1) consisted of data stored on a
Cray ND40 disk array, display software running on a CRAY
J90, a PsiTech frame buffer with a 2k x 2k Sony monitor
display device. All these components were connected via
an NSC HIPPI switch. The interface to our demonstration
software was a initially a command line interface. We
replaced the command line interface with a web interface
and added links to relevant pages to create our web based
demonstration.

Considerations

Large data storage and fast network needed
We had a number of considerations for this project.

Animations often consist of large amounts of data which
require a large amount of storage space. We increased the
storage space requirements by working with high resolution
animations. We had several animations with images of 2k x
1k. Each image at this resolution was more than 6 Mbytes
of data. One particular animation consisted of 1800 frames.
This was more than 11 Gbytes of data for a single
animation. This data required a large amount of storage
space and high speed networks to show a smooth animation.
Cray’s ND40 RAID disk array provided the capability to
store up to 376 Gbytes of data in a RAID5 configuration.
All the equipment we used had HIPPI interface connections
for fast data transfer. HIPPI 1600 has a maximum data
transfer rate of 200 Mbytes/second. If we transfer 24 2k x
1k frames per second we would need to transfer about 151
M2bytes per second. Twenty-four frames per second would
give very smooth animation.

Easy access to additional information
Since the people giving the demonstration would not be

experts in the field they were demonstrating, easy access to

information about what they were demonstrating was
required. We also needed easy access to additional
information so that the demonstrators could easily answer
questions about what they were demonstrating. The Web
provided these features. We created a web page with the
basic information about each demonstration and with links
to other pertinent information.

Run demonstration on Cray system
We wanted to run the demonstration on the Cray for

several reasons. We already had an existing animation
display program running on a Cray system. We did not want
to have any hardware dependencies other than Cray
systems. Visitors are generally much more excited about
seeing data coming from a Cray rather than from a video or
workstation playback. Our existing animation program
highlighted the strength of a Cray network. The existing
animation program used a 200 MB/sec HIPPI network to
transfer data to a frame buffer.

Use NCSA browser and server
Our decision to run only on a Cray system limited some

of our software choices. We were only interested in
working with existing web servers and browsers that ran on
Cray systems. This led us to choose the NCSA Mosaic
browser and NCSA server. Although the Mosaic browser
lacked some of the features of Netscape Navigator, it still
provided a commonly used web interface on which people
felt comfortable working. Our web interface allowed easy
integration of animation, text and existing programs. And
our web interface allowed easy links to other information.

Animation Software
The software consisted of a C program which used the

PsiTech frame buffer libraries to send images to the PsiTech
frame buffer. This program was called from a Common
Gateway Interface (CGI) script. The interface was an
HTML page. Instructions were at the top of the page and
users could start and stop animations by clicking on the
appropriate image within the page. Summary information
was given for each animation. Text within the page could
be clicked on to lead the user to additional information for
each demonstration.

Experience

Install NCSA browser and server on Cray system
Once we decided to use a web interface, the first step

was to get the appropriate web software running on our
Cray system. We chose NCSA’s HTTPd web server
(http://hoohoo.ncsa.uiuc.edu) and NCSA’s MOSAIC web
browser (http://www.ncsa.uiuc.edu/SDG/Software/XMosaic)
because they had been ported to the Cray, they were free,
they were easy to obtain via anonymous ftp, and we were
familiar with them from working with the workstation
versions. When we began the project there were fewer web

Copyright 1997 Cray Research, Inc. CUG 1997 Spring Proceedings 73

building tools than there are today. Most of our initial
development work was done using a screen editor. Even
with this limitation we found it easy to create an attractive
demo interface. Currently there are many more web
development tools available that would make the job easier.

Internal Use
This demo was only intended for internal use, so we

were not limited by some of the restrictions that other web
developers faced. Because we were dictating that Mosaic
be used for the Web browser we were unconcerned about
how the pages appeared using other web browsers , however
this also limited us to using only features supported by the
Mosaic browser, and we were unable to use features such as
frames and tables.

Simple HTML pages
The demo pages were simple. They consisted of a main

page with an instruction section. (Image 2) The page
contained images and text for a variety of demonstrations.
The user was instructed to click on a image to start the
animation. By clicking on an image the user would start a
process on the Cray system that would send images from the
ND-40 disk array to the PsiTech frame buffer and Sony
monitor as an animation. This process was completely
invisible to the user. The user clicked an image and then
saw the animation on the Sony monitor. Additional pages
give more detail for each demonstarion and provide links to
sites with related information.

Tools
Initially when we created our web pages we used the

visual editor, vi, since we did not have access to any other
web building tools. With Silicon Graphic’s acquisition of
Cray Research we have access to many more visualizaiton
tools. Recently we have worked with SGI’s CosmoCreate
and Adobe Photoshop. CosmoCreate is SGI’s visual HTML
editor. With CosmoCreate we were able to very rapidly
create attractive HTML pages. CosmoCreate let us design
pages, add links, add images and test pages. With Adobe
Photoshop we were able to modify and enhance images.
These two tools allowed us to quickly prototype a web user
interface.

Running the browser and server
We built a special web server for this demonstration.

Web servers are not generally used on Cray systems. We
ran the server as an application. A README file instructed
the demonstrator to run a prebuilt script to start the server
before the demonstration. We chose this method because at
our site the Cray system is rebooted and reconfigured on a
regular basis. By running the server as an application rather
than as part of the Cray system we had complete control
over the software and we were not dependent on the web
server being brought up as part of the kernel.

 Case 2 Using the Web to create a viewer for analyses

Background
Cray systems are very often used to analyze large data

sets. This often generates large results files. As the results
files get larger, it becomes more difficult to do interactive
visualization of results. Computer users with large results
files would like to easily visualize the results. By using the
Web to add a simple graphics script to an analysis job
before it is run or using the Web to submit the graphics
script after the job is completed, the desired images and
animations are generated for later playback. The playback
of the image and animations can also be done using a web
interface. The worldwide availability of the Web allows
results to easily be shared to with researchers in other
geographic locations. The wide spread acceptance of the
Web allows this to be done without the difficulty of
installing and supporting additional software.

Problem: Data too large to be view interactively

Solution: Have batch job generate desired visualization

Goal
The initial goal of this demonstration was to provide a

simple interface to allow users to create visualizations of
results from large data sets. The Web interface was
designed to allow the user to take an existing input script for
the engineering analysis code Livermore Software
Technology Corporation’s LS-DYNA3D, edit it using the
web interface, select desired visualization output and submit
the job to a Cray or SGI system after selecting computation
parameters.

There are a number of advantages to building software
on the Web in this way. The Web is a familiar platform.
The familiarity of the Web is beneficial to both the
developers and the users. Developers are accustomed to
working with the Web and can build applications based on
their experience using web software. Users are more
comfortable using an interface they are familiar with. Our
goal for this type of software is that fewer experts will be
required to do analysis. The web interface is generally
easier to use than a typical application interface. Scripts can
be generated to provide a template for analysis. One expert
could oversee the work of several people. Each person
would run their analyses using a web interface and a
template script to which minor changes could be made.
More analyses could be run.

This project is a ‘work in progress’. We are currently
exploring the concept of using the Web to build tools. This
is an open ended effort. The goal of the project is not to
create a product, but to research the concept of the Web as a
platform for more advance visualization tools, and to
prototype visualization tools on the Web so that the concept
may be more easily critiqued. We currently have many
questions, some of which we will not be able to answer until
we see what happens with the Web.

Copyright 1997 Cray Research, Inc. CUG 1997 Spring Proceedings 74

Components
This web application interfaced to application software

running on Cray computer systems.

This application is designed as a modular system and
components can be easily changed. There are four main
components in our system: Web interface for designing
visualization scripts; Analysis code; Visualization code;
and Results viewer. In our system we used LS-DYNA for
the analysis code and wrote software for the web interface,
the visualization scripting software, and the results viewer.
We could easily replace LS-DYNA with another analysis
code, or we could use software from Alias/Wavefront to do
the visualization. The modularity of the system offers many
possibilities.

System
The Web software consisted of NSCA web server and

Netscape Navigator browser. The interface was written
using a combination of HTML, JavaScript, and C. We ran
the browser on an SGI Indigo 2 workstation. Images were
displayed using SGI’s ipaste and movies were displayed
using SGI’s movieplayer. On the Cray system we used NQS
to submit scripts to LS-DYNA. We developed C code on
the Cray system to generate the images and movies.

Experience
The main page for the Web Visualizer (Image 3)

consists of 4 selections: Review Dyna Deck, Submit Dyna
Deck, Batch Graphics, Analysis Results.

Review Dyna Deck allows the user to load in an
existing Dyna input file and review and edit the parameters.

Submit DYNA Deck is basically a graphical user
interface to the Network Queuing System which allows you
to set up the parameters for NQS and submit the job to the
Cray system.

The Batch Graphics Page (Image 4) allows the user to
specify what images and movies he would like to see. The
user can choose from a palate of graphics functions such as
isosurface and slice plane. The user clicks on the desired
graphics functions to build up each image or animation.
Once the script has been built (Image 5) the user clicks on
the “Submit Script” button and a CGI script initiates the
application software on the specified system.

The Analysis Results Page (Image 6) shows the
visualization results. This page dynamically updates as new
images and movies are generated. (Image 7) Small images
in the page represent the images or movies that have been
generated. The user clicks on one of the small images on
the page to see that actual image or movie.

The network scope of this application was generally
kept to within Cray Research. Web security issues make it
difficult to submit jobs to or from remote sites. In order to
easily use this application we needed to be able to create
software that was run by the server such as CGI scripts.

Even though the actual network to generate analysis
results was local, sharing the results with remote sites is
possible. The Analysis Results Page is available to remote
users via the Web. The availability can be controlled so that
results may be kept accessible only to those on the internal
network or the page may be moved to a different location to
allow accessibility from other locations.

Questions and Issues

The following is a sampling of some questions and
issues that have arisen during our work on the Web.

How do we handle the security issues? Many people
are not yet comfortable with security available on the Web.
Until the comfort level is raised it will be difficult to get
these people to use Web based tools to visualize their data.
Currently there are a few options to providing more secure
web pages, such as setting up password checks or using
authorization files, but these efforts to provide a more
secure environment make more work for the developer and
often create a less user friendly interface. And even adding
these security features people still feel unsure about the
security of their data.

As data sizes increase how do we ensure that the data is
located in the appropriate place? Transferring large data
files across a network can be difficult and space can be a
limitation. On the Web if a file is not located in the correct
directory, it may be impossible for the user to access the
file. Sorting out how to be sure that data is in the correct
location is an issue for this type of software.

Conclusion

The Web is a good platform for building simple
visualization interfaces. People are comfortable using the
Web. With the many web tools available building an
attractive user interface is easy. Software installation and
maintenance is simplified because so many sites support
web browsers and servers. Because web software is
supported on most major computer platforms, available
hardware issues are simplified. Networking facilities in the
Web allow data to be shared with others who have web
access. By providing and easy to use interface to
visualizaiton we reduce the expertise bottleneck.

Although the Web is a good platform for simple
interfaces, people creating more complex interfaces should
consider several factors to determine if the Web will be an
appropriate interface platform. One thing to consider is that

Copyright 1997 Cray Research, Inc. CUG 1997 Spring Proceedings 75

on the Web maintaining data security can be an issue. Very
often the user is not running the application, the server is
running the application. This means that the server may
require the data to be world readable. Anyone with access
to the server would have access to the data. Another
consideration is that building a more complex interface, the
developer will likely want to be able to work with the web
server to generate CGI scripts. At some sites it may be
difficult to get access to the web server.

