-“"'If\.x"l Table of Contents 1 j"'/h. ‘| 'Aullmr Index i) !/’V' Home
AR ! !

Get Agraob:rt }"l © Postscrlpt

VYersion

Get PDF
@ Version

How to Write Parallel Programs on the T3E Using
Linda

Carlos Sosa
Chemistry Applications, Slicon Graphics, Inc./Cray Research, Eagan, MN 55121

cpsosa@cray.com

http://wwwapps.cray.com/~cpsosa/

Nicholas Carriero

Computer Science Department, Yale University, New Haven, CT 06510

carriero-nicholas@CS.YALE.EDU
http: //www.sca.com

ABSTRACT:

Lindat is a model for parallel processing based on distributed data structures. Processors and data objects
communicate by means of the tuple space (TS) or Linda memory. The interaction between the tuple space
and the processors is carried out by four basic operations: out, in, eval, and rd. These operations
add/remove/read data objects from/to the tuple space. eval on the other hand also forks processes to initiate
parallel execution. In this presentation we'll discuss the use of Linda on the T3E.

KEYWORDS:
Linda, Tuple Space, Memory, Programming Model

I ntroduction

Since the early 80's there have been numerous parallel computer projects [1] _, such as, ICL DAP, Denelcor, Intel
iPSC, NCUBE, Connection Machines, and many more. However, most applications have not migrated to parallel
machines nor have they extensively taken advantage of clusters of many workstations. In part this is due to the fact
that parallel programming is not easy, some algorithms currently being used by many applications in the scientific
arena cannot be trivially subdivided in many independent tasks. Additionally, current compiler technology cannot fully
and automatically paralelize large applications. In most cases, extensive manual parallelization is required to take
advantage of a system with distributed memory on many processors.

Furthermore, a variety of parallel programming models have emerged in the last few years. This has introduced an
extra dimension when a programmer is faced with the task of paralelizing a particular application. A particular
paralel programming model is an attempt to allow users to excerpt control over the hardware. It provides a way for the
user to distribute data and work among all processors available on a highly-parallel machine

Currently some of the most commonly used programming models on the CRAY T3E are: CRAFT, PVM, and MPI[2] .
CRAFT, the Cray Fortran programming model was originally designed for the CRAY T3D, this model supports four
programming methods: data-sharing, work-sharing, message-passing, and explicit shared-memory. On the other hand,
PVM and MPI are message passing programming models.

An Alternative to the above mentioned programming models is Linda[3] which is a memory model. Lindas virtual

memory (shared-addressable memory-like) on the CRAY T3E provides users with a simple and flexible programming
environment. A model familiar to programmers on CRAY vector systems. Linda creates a virtual shared memory that
is shared logically by all the processors on the CRAY T3E. In this paper we discuss how to write programs using Linda
with emphasis on the CRAY T3E and briefly discuss its implementation on the CRAY T3E.

CRAY T3E Design Features

A magjor difference between traditional vector supercomputers an MPP machines is in the memory architecture[4].
Traditional vector supercomputers that use parallel vector processors (PVP) have one uniform shared-addressable
memory among all the processors. For example, the CRAY T90 has 32 processors, each with very rapid access to
central memory. Any processor can read any word in memory with the same time delay. On the other hand, MPP
systems, such as the CRAY T3E used in this work, have distributed memory. Figure 1 illustrates an air-cooled CRAY
T3E.

The CRAY T3E parallel computer system consists up to 2048 process elements (PEs) and 128 system/redundant PEs.
Peak performance for the largest configuration is 1 TFLOPS. Each PE on this system is composed of a DEC Alpha
21164 EV5 RISC microprocessor. Memory size scales from 64 MBytes to 512 MBytes per PE (it can be extended to 2
GBytes). Local memory is divided into cached and non-cached. Cached data is distinguished by 0 in the uppermost bit
(bit 39) of the physical address. A 1 in bit 39 identifies non-cached data. All remote loads/stores operations are carried
out by external registers called E-registers. This is the only mechanism for accessing remote memory in T3E. The
interconnect network on the Cray T3E is a 3D-torus with some partial planes allowed.

Figure 1. Air-cooled CRAY T3E

Process elements are built 4 to a printed circuit board. These 4 PEs have network connection to a globally-accessible
I/0O channel. Finaly, it is important to mention that the EV5 has a 96 KBytes 3-way set associative secondary cache

on chip[5] .
Parallel Programming M odel

In general, we can consider three types of concurrency (parallelism): data level parallelism, task level parallelism,
and functional level parallelism. In these three cases parallelism arises from data multiplicity, multi-tasking, and data
pipelining, respectively. Corresponding to these types of parallelism, one might consider three parallel programming
(coordination) paradigms: data parallel, message passing and shared-address location. These paradigms are not
mutually exclusive, but they are clearly different from paradigms for computation.

In this context, Linda[6] is defined as a language-independent set of coordination operations that embraces the above
parallel programming paradigms. Linda has been integrated with C and Fortran to define high-level parallel
programming languages C-Linda and Fortran-Linda, respectively.

One of the key concepts in the Linda coordination model is the shared, content-addressed, ~“virtual" memory tuple
space. All the interprocess communication is carried out via operations on tuple space. In this model, the programmer
never has to be concerned with or program explicit message passing constructs and never has to manage the relatively
rigid, point-to-point process topology induced by message passing. In contrast, coordination in Linda is uncoupled and
anonymous. The first means that the acts of sending (producing) and receiving (consuming) data are independent
(akin to buffered message passing). The second means that process identities are unimportant and, in particular, there
is no need to “"hard wire" them into the code. Conceptually, this amounts to the difference between trying to run a
commodity trading pit with a tangled mass of telegraph sets (point-to-point) rather than yelling and listening (a trader
lauches a bid into space, those interested in the bid pull it in). It also means data may live independent of a process,
so shared variables are easy to support---unlike message passing which insists that data always be ~~somewhere", and
thus impose considerable overhead in the form of a process created to manage the variable that is to be shared.

Another important difference between Linda and systems like PVYM and MPI is that Linda is implemented as a
coordination language while the others are implemented as libraries. A language-level implementation provides better
syntactic support and a richer semantic interface which simplifies coding---the examples illustrate this.

The data is moved from/to tuple space by using tuples. Tuples are defined as a sequence of different type of fields
separated by a delimiter (comma) and enclosed in parentheses. Examples of tuples may be seen in Figure 2.

("task", 13.4, 7)
("evaluate", 6, hello(i))
("integer", i)

Figure 2. Examples of tuples using C-syntax.

In these three cases we have tuples with three and two fields. In al cases the first field is a string that can be used as
atag.

Linda Operations

Linda interacts with the tuple space using four basic operations. Three operations can be used to add/remove tuples
from the tuple space and a fourth operation that is capable of creating new processes. These four operations are
described in Table 1.

Table 1. Four Basic Linda Operations.

Operation Description

out() Defines or adds tuples in the tuple space

in() Reads and deletes a tuple from tuple space

rd() Reads a tuple from tuple space

eval() Creates a new process and/or adds a tuple in the tuple space

In addition to these four operations Linda provides two variants of in and rd. inp and rdp, respectively[7] . These two
operations are non-blocking forms of in and rd which return true or false if the request was successful or not.

CRAY T3E Linda Implementation

10 years of research at Yale and Scientific Computing have led to a general strategy for developing efficient Linda

implementations:;

1. At module compile time, collect data about the Linda operations within a module.

2. At link time, analyze the pattern of Linda usage, as given by the data collected in 1. Use the results of this
analysis to:

1. Restrict the collection of tuples or templates (the ““tuple" produced by an in()/rd() operation) a
given operation must consider by construction of a disjoint partitioning of the operations. An
operation in one set cannot be influenced by the activity of an operation in another set.

2. For each partition, choose a data structure for organizing the tuples and templates arising from
operations in the partition. The data structure is chosen from a small list of standard structures
(counting semaphores, queues, etc.).

3. Given a target architecture, make good use of its ““feature set" to implement Linda runtime services that
ensure the data structures of item 2.2 are well supported. Note that assigning responsibility for managing
tuple space to one processor is likely to create a bottleneck, so the the work of managing tuple space should
be distributed across a number of processors.

Efficient Linda runtime support has been developed for a variety of platforms including shared-memory,
distributed-memory, and LAN architectures. The T3D/T3E architecture, however, differs in significant ways from all of
these. In essence the T3D/T3E can be viewed as an instance of an architecture somewhere between shared-memory
and distributed-memory. It is like shared memory systems in that a data location can be referenced from any process,
making it relatively easy for different processes to asynchronously access and update the data structures holding tuple
space. Unfortunately, it is like distributed memory in that the address space is partitioned. This meant our traditional
shared memory implementation---based on a model in which all addresses (local or shared) are in the same address
space---wouldn't work. E.g., in the ““typical" SMP model, a data structure pointer is the same whether the pointer is to
alocal or shared address. On the T3D/E, a "pointer" to an address on another node is completely different from a
pointer to a local address. Driven by these considerations, we developed a new runtime loosely based on our shared
memory approach but one that reflected and exploited T3D/E features. Two examples of the latter: 1) heavy use is
made of the 64 bit swap operation to accomplish both synchronization and movement of important control data, 2) the
ability to access any memory on any node is leveraged to provide "zero copy" data transfers when an in() precedes an
out().

Example

One of the first programs that any C programmer learns is the simple "Hello World" program. In this section we present
the C-Linda version of "Hello World". It is interesting to note that even this simple example basicaly illustrates the
use of all the Linda operations required to parallelize an application.

#i ncl ude <stdio. h>

real _main (argc, argv)

i nt argc;

char *argv[];

int nworker, j, hello(), sum tenp;

if (argc '=2) {

fprintf(stderr, "Usage: % <workers> \n", *argv);

nwor ker = atoi (argv[1]);

out ("sunt', 0);

for (j=0; j<nworker; j++)
eval ("worker", j, hello(j));

for (j=0; j<nworker; j++)
i n("done");

in("sun', ? sum;

printf("sumis %\n", sunj;

for (j=0; j<nworker; j++) {

in("worker", j, ? tenp);
printf("%"2 is %\n", j, tenp);
}
printf("hello world is finished\n");
[exit(0);
}
hel | o(i)
i nt i
-
i nt sum
printf("Hello, world from nunber %\n", i);
in("sum', ? sum;
out ("sum', sum+ i);
out ("done");
return(i*i);
}

Figure 3. C-Linda "Hello World" program.

This program requires as input the number of workers that will execute the hel | o()) function. In the case of the
CRAY T3E this number normally corresponds to the NPEs - 1. The first for loop creates workers that print "hello
world", increment a global sum, define a tuple "done" in the tuple space, and return a product. The second for loop
waits for a "done" tuple from each worker. Once the "done" tuples have been collected, the global sum is retrieved
and printed. The last loop matches the tuples in tuple space created by the eval operation. This loop retrieves and
prints in order the products left behind by the workers.

Summary

Linda provides a very simple and flexible parallel programming model. Its shared, content-addressed, *“virtual"
memory tuple space eliminates the need for explicit message passing constructs. In the Linda programming model,
three operations are used to add/remove tuples from/to the tuple space. In addition, a fourth operation creates new
process (workers). All the communication is carried out via the Linda memory or virtual memory that is created at
the software level. In this context, Linda programs often use the idea of having a master process. The master process
creates workers and coordinates or does the accounting after each worker terminates its task.

Acknowledgments

The authors wish to thank the Corporate Computer Center at Silicon Graphics, Inc/Cray Research for providing time
on the CRAY s T3D/E.

Footnotes

1 Lindais a trademark of Scientific Computing Associates, Inc.

References

[1] Oliver A. McBryan, Overview of Current Developments in Parallel Architectures, in Parallel
Supercomputing: Methods, Algorithms and Applications, Edited by G. F. Carey, John Wiley & Sons, NY, NY, 1989.
[2] Cray Research, Cray Research MPP Software Guide, SG-2508 1.1, Mendota Heights, MN, 1994.

[3] N. Carriero and D. Gelertner, How to Write Parallel Programs: A Fisrt Course, MIT Press, Cambridge, MA,
1990.

[4] R. W. Numrich, P. L. Springer, and J. C. Peterson, Measurement of Communication Rates on the CRAY T3D
Interprocessor Network, Eds. W. Gentzsch and U. Harms, in High-Performance Computing and Networking,
Springer-Verlag, Munich, Germany.

[5] S. Oberlin, R. Kessler, S. Scott, and G. C. Thorson, CRAY T3E Architecture Overview, Cray Research Manual,
Chippewa Falls, MN, 1996.

[6] N. Carriero and D. Gelernter, How to Write Parallel Programs. A Guide to the Perplexed, ACM Computing
Surveys, Vol. 21, 323(1989).

[7] Scientific Computing Associates, Inc., Linda User's Guide and Reference Manual, Scientific Computing
Associates, New Haven, CT 06510.

Authors Biography

Carlos Sosa is a computational chemist in the chemistry applications group at Silicon graphics, Inc./Cray Research in
Eagan. He is currently working with the Linda version of the electronic structure application Gaussian 94.

Carlos Sosa

http://wwwapps.cray.com/~cpsosal

Nicholas Carriero is a research scientist at Yale University and Scientific Computing Associates. He is one of the
main developers of Linda

Nicholas Carriero

http://www.sca.com

Table of Contents | Author Index | CUG Home Page | Home

