STAR-HPC

Automotive CFD CRAY T3E and CRAY J90 Results

	Cells	Total		Elapsed	Iteration	Total	
<u>NPES</u>	per PE	Haloes	Boundary	Time (sec)	0 time	<u>Sweeps</u>	Machine
1	2819922	0	263602	22973.8	3674.9	7408	J90
16	176245	393436	289185	1830.4	176.1	7426	J90
24	117496	455950	292059	1472.7	140.5	7416	J90
30	93998	481289	291900	1253.2	117.1	7404	J90
40	70498	570442	299597	1315.3(+)) 135.7	7175	T3E
60	47000	646617	304508	951.8(+)) 123.1	7160	T3E

CRAY J90 1-30 PE speedup: 98.17% parallel CRAY J90 16-30 PE speedup: 97.09% parallel CRAY T3E 40-60 PE speedup: 99.49% parallel

Support of Application Vendors

Cray Proprietary

PAM-CRASH v96 Distributed Memory Scalability Example

Automotive Acoustic Optimization

Goal: Minimize noise at the riders ear by adjusting auto body thickness

FEM Model:	195,000	structural dof
	10,000	fluid dof
	138	design variables
Computer		
Requirements:	CRAY C90	
	20,000	CPU seconds
	37,000	elapsed seconds
	802,000	MBYTES transferred

Support of Application Vendors

Cray Proprietary

Automotive Acoustic Optimization Required Software Tools

MSC/NASTRAN V68

- SPARSE Solvers
- Cray EAG FFIO Libraries
- Cray developed DSGV1
 - Linked in using CRAY ISHELL feature
- "Adjoint Response Methods" DMAP
 - developed by Mladin Chargin, CDH
- FE Model, "body in white"
 - developed by auto customer

Cray Proprietary

NVH & Crash Optimization of 1.1M DOF Body-in-white

- Minimize the MASS using 126 design variables)
 - 1.1 M DOF
 - ≈ 90,000 elements
- Constrain 1st bending and 1st torsion modes
- Calculate 15 modes per iteration
- MSC/NASTRAN & LS-DYNA
 - C90, 4 CPU's, 80MW memory

Source: Mladin Chargin

Support of Application Vendors

Cray Proprietary

Page 5

4 Silicon Graphics Company

NVH-Crash Optimization of 1.1M DOF Body-in-white

Understanding the Customer's Problems: Chemical Process CFD Users Group

"Promote and enhance the value of CFD in the chemical process industries for competitive and economic benefit." Founded in April, 1993

- DOE
- Chemineer
- SGI/Cray
- Dow Chemical
- Dow Corning
- Du Pont
- Eastman Chemical
- Phillips
 Petroleum
- Lightnin

- ∎ Eli Lilly
- NIST
- Shell Oil
- *3M*
- Monsanto
- Chevron
- I UOP
- Air Products
- Proctor & Gamble

Support of Application Vendors

Cray Proprietary

Iterative FEM Die Surface Design Algorithm to Compensate for Springback

High Speed Machining Geometry and Physics of Metal Cutting

High Speed Machining Characteristics

- High strain (>2000 percent)
- High strain rate (>10⁶)
 - Ballistic impact conditions
- High gradients
- Intense local heating (~1 MW/mm³)
- High local temperatures
 - Aluminum: > 1000 F
 - Titanium: much higher
- Conditions outside documented material properties

Support of Application Vendors

Cray Proprietary

Metal Cutting Simulation

Technology: Finite element simulation of coupled heat transfer-deformation.

Application Vendor: Third Wave Systems.

Partners: SGI/Cray, plus leaders in automotive, aerospace, materials, and tooling industries.

Status: 2D code available, 3D code under development. 2D results matching experimental data.

Challenges: materials characterization, adaptive remeshing, computing resource requirements.

Cray Proprietary

Cray Applications Support Model

Support of Application Vendors

Cray Proprietary

Support According to Market Demand (cont'd)

Desktop Codes
 (1000's in application directory)

Primary Support: SGI Developer's Program
Enterprise, Explorer, Artisan Levels
Developer's Forum (yearly)
Club Dev Web Site
Dev Toolbox CD
Hot Mix CD
Apps Directory Listing
Discounts on Development Machines

Support of Application Vendors

Cray Proprietary

Support According to Market Demand (cont'd)

Locally Important Codes

<u>Examples</u> •Traditional Cray Customers •National Labs •Environmental Centers •Distant Lands •Japan (Software Cradle) •Austria (AVL/Fire)

•Australia (Moldflow)

Primary Support:

Field Support from Local Offices
With Coordination from Corporate

Support of Application Vendors

Cray Proprietary

Support According to Market Demand (cont'd)

Globally Important Codes

<u>Headquarters and Worldwide Support</u> <u>Any Combination of these Characteristics</u>

- •Dedicated performance engineer
- On-site porting hardware
- Dedicated connection to Eagan
- Trade Show and User Conference participation
- •Hero Projects and Customer
- •Marketing Materials (video, printed, ...)

Cray Proprietary

Globally Critical Partners

- Examples:
 - Parametric Technology Corporation
 - Gaussian, Inc.

Unique Support Characteristics

Dedicated on-site performance engineer (Gaussian)
Global Partners Management (Parametric Technologies)

Support of Application Vendors

Cray Proprietary

How Should We Work Together?

Silicon Graphics Influence with Vendors

- Silicon Graphics/Cray typically among the most important, if not the most important, of the hardware platforms
- Vendors largely remain independent
- **Customer Influence with Vendors**
 - Vendors typically much more responsive to customers
 - This is especially true of "Cray Customers"
- We are most effective working together

Support of Application Vendors

Cray Proprietary

