
Cellular Irix Plans and Status
Gabriel Broner
Silicon Graphics
655F Lone Oak Dr, Eagan, MN 55121, USA
E-mail: broner@cray.com

CUG Stuttgart, June 1998

Abstract

Cellular Irix is an evolution of Irix that incorporates features available in UNICOS and UNICOS/mk,
including increased scalability and fault containment. Cellular Irix is a long-term vision, while at the
same time pieces of its technology are being incorporated into Irix to solve today’s real-world problems.
This paper describes the architecture of Cellular Irix, the near-term Irix deliverables that incorporate its
technology, and the status of the project.

Contents

Introduction: A Single Operating System
Background: Operating System Requirements
The Architecture of Cellular Irix
Cellular Irix Deliverables
Project Status
Conclusions

1. Introduction: A Single Operating System

After the merger between Cray Research and Silicon Graphics, the two organizations analyzed their
needs in operating systems. The groups jointly decided to proceed with a common path. A single
operating system for the broader product line leverages the expertise existing on both sides to develop a
better product. The joint system, Cellular Irix, offers features from Irix, UNICOS and UNICOS/mk. The
system is binary compatible with Irix, provides access to a large set of applications, and is source
compatible with applications coming from the UNICOS and UNICOS/mk operating systems that
comply with the published Supercomputing API.

The decision to have a single operating system also has an impact in other areas; we will be able to reuse
libraries, commands, compilers, etc. across the wider product line. At the same time, we expect a single
operating system will simplify things for customers, who will only need to deal with and administer one
system, and for ISVs, who would be able to target a wider range of machines with a single application
port.

The rest of this paper covers the following: Section 2 talks about requirements for the operating system.
Section 3 presents the Cellular Irix architecture. Section 4 describes the various Cellular Irix
deliverables. Section 5 covers the status of the project. Section 6 offers the conclusions.

2. Background: Operating System Requirements

An operating system that services the "servers to supercomputers" product line has to address
requirements coming from the various market segments it targets.

Requirements from the High End

An operating system for the high end needs to be able to support large machines (typically from 64 to
4,000 CPUs) with good performance. The operating system has to properly scale for technical
computing workloads, which typically are large CPU-intensive applications which also perform a large
number of big-block I/O requests.

From a usability and ease of administration perspective, a large system (e.g. 1,000 CPUs) needs to
present itself as a single coherent system (Single System Image, or SSI) and not as 1,000 independent
machines.

On a large system, hardware failures are more likely to occur (for statistical reasons), so it is important
for the operating system to be able to tolerate failures, such that any failure does not bring the system
down.

There is also a series of features that have unique requirements for the high end. These include
Checkpoint/Restart, Limits, Accounting, Scheduling, and Security among others.

Requirements from the Server World

The server world requires an operating system that will support "medium size" machines (from 4 to 64
CPUs.) Applications are typically smaller than those in the supercomputing world, but the demands they
impose on the system may be higher, due to a more varied use of system services. Appropriately scaling
these general purpose workloads is a challenging requirement for a system in the server world.

From a fault containment point of view, the requirements are also different. In the server world, a system
being down may represent money being lost. For example, if a system servicing credit card transactions
happens to be unavailable, customers may just switch to use a different credit card. In this example,
money lost due to a server being down may never be recovered, and as a result, servers being up and
available at all times is clearly a goal.

3. The Architecture of Cellular Irix

Cellular Irix is an operating systems architecture that provides increased scalability and fault
containment.

A cell is an Operating System abstraction that represents a "piece" of the machine (a series of CPUs,
their associated memories, etc.) Within a cell, the operating system looks pretty much like an SMP

operating system (like Irix, or UNICOS). Across cells, the distribution of subsystems offers single
system image (like in UNICOS/mk). (Figure 1 shows a multi-cell system.)

Figure 1 - A multi-cell Cellular Irix system

Cells can be of different sizes, and a particular machine can be configured in more than one way. For
example a 128-CPU machine could be configured as 4 cells of 32 CPUs, or 8 cells of 16 CPUs, etc. Cell
sizes and the number of cells have implications on fault containment and scalability. From a fault
containment point of view, a failure in a cell brings down the complete cell. If cells are large, more of
the machine will be lost in a failure. From a scalability point of view, within a cell, the system will scale
like an SMP, and across cells, like a distributed OS. If cells are large, lock contention and memory
latency within a cell will be high, while there will be less inter-cell traffic due to distributed protocols.
On the other hand, if cells are small, SMP lock contention and memory latency will be small, but the
increased number of cells will imply higher inter-cell traffic. In general we expect a "medium ground"
solution will satisfy the needs of each individual site in terms of fault containment and scalability. Just to
give an idea of our current thinking, we imagine a 1,024-CPU machine could be 32 cells of size 32, and
a 4,096-CPU machine could be 64 cells of 64 CPUs.

From a performance point of view Cellular Irix behaves similarly to Irix when a system call is serviced
locally within a cell. To achieve this level of performance, a series of techniques is being used to keep
most operations local to a cell. Examples of these techniques are local caching and a peer-to-peer style
of distribution.

4. Cellular Irix Deliverables

Our long-term vision is a multi-cell system where all subsystems are fully distributed, the system is fully
single system image, and it tolerates failures on any cell. At the same time, utilizing Cellular Irix
technology, we will provide near-term deliverables that address the immediate needs of the various
market segments.

Figure 2 shows the deliverables that utilize Cellular Irix technology. In 1998 Irix 6.5 is available as a
single system to address the needs of the technical compute market, or as a partitioned system to address
the needs of the server world. In 1999 the Enterprise and Supercomputer variants of the system
represent evolutions with additional capabilities. Future releases will continue to enhance the systems

for both markets.

 1998 1999 2000+

 Irix 6.5 Irix 6.X
 Partitioned System Enterprise Fut. Cellular Irix
 Single System Supercomputer

 -->

Figure 2 - Cellular Irix Deliverables

1998 - Irix 6.5

Irix 6.5 is offered in two flavors: Single System and Partitioned System .

Single System

The Single System variant addresses the needs of the technical computing market, where the main
objective is to run large applications across the system. Irix 6.5 single system scales up to 128 CPUs in
an SMP manner providing single system image. The system scales well for large applications that
perform compute and I/O in large blocks. At the same time, this system does not offer fault containment:
hardware or software failures bring the complete system down.

Partitioned System

The Partitioned System variant addresses the needs of the server/high availability world. In an Irix 6.5
partitioned system each cell (or partition) is effectively an independent host with its own console, root
disk, host name, etc. The partitioned system does not offer single system image. The key feature of this
variant is that it offers full fault containment for each cell. If a failure occurs in a given cell, only that
cell will be affected while other cells continue to operate. This variant of Irix is intended to run server
workloads where full fault containment is the overriding requirement, and single system image is
secondary. The Irix partitioned system supports the array/FailSafe software, which offers redundant
services for database servers, web servers, and file servers.

As an example, a partitioned Irix 6.5 system would offer a good solution for a credit card transaction
database server: a database server would run on one cell. If that cell fails, a second database server
would be started on the second cell. Using multi-ported disks, the second cell will have immediate
access to the database files. By using IP aliasing, the second database server quickly responds to the
internet address of the downed database server. The array/FailSafe software provides the support
mentioned here.

1999 - Irix 6.X

Single System (a.k.a. Supercomputer, HPC, SSI)

This version utilizes cells to scale up to thousands of cpus to address the needs of the high-end technical
market. It offers full single system image, which means that for users, applications, and administrators, a

large machine running as a single system will look like a single host. To provide single system image,
all subsystems are distributed. However, not all subsystems are distributed in the same manner:

The file system and volume (disk) manager are fully distributed in a peer-to-peer fashion, such that
file I/O issued on a given cell be processed on that cell. The new distributed file system is called
CXFS (for Cellular XFS, and the new volume manager is call XVM, for eXtended Volume
Manager).
Other components are distributed in a more "basic" fashion. For example networks reside on a
special cell, that we call the golden cell. Networking requests are forwarded from the originating
cell to the golden cell for processing.

From a fault containment point of view, a failure on the golden cell is fatal and it brings the system
down. A failure in any other cell can be contained to that cell. Note that golden cell failures will be
infrequent, compared to failures on any cell. Note also that application recoverability is achieved via
Checkpoint/Restart: an application can be checkpointed periodically, and in the event of a failure on a
given cell, it can be restarted on a different set of cells.

From an administration point of view, this solution allows administering a large machine like a single
entity, and not like a large collection of machines.

Note that this solution addresses well the needs of the HPC/Supercomputer world, which is running
large technical computing applications that perform lots of computation and I/O in parallel. This
solution is not intended to provide scalable services to interactive users or generic server applications.

This system is intended to run parallel applications well across the whole machine (across cells). Parallel
jobs using the MPI and shmem programming models will be supported, and they will offer performance
similar to MPI and shmem running on an SMP. MPI and shmem utilize shared memory, which is
transparently distributed across cells; as a result these applications can exchange messages and data
without the operating system being involved. This offers much better performance than cluster solutions.
In addition, the MPI and shmem models could be used together. An existing MPI application will
directly port to a machine running Cellular Irix, and it will run better than on a cluster due to the MPI
shared memory implementation. In addition, a few key routines of that application could be rewritten
using shmem, such that the overall performance of the application can be improved without a total
rewrite. This is somewhat similar to writing key routines in assembly language in a large C application,
to improve its performance without a major rewrite.

As it was mentioned earlier shared memory (system V, mmap’ed files, and /dev/zero) is distributed, so
multiple cooperating processes can share memory across cells. Individual processes (like a C - Pthreads
application) will be confined to use the CPUs of a cell. They can, on the other hand "borrow" memory
from other cells, so a single process can effectively use all the memory in the machine.

Partitioned System (a.k.a. Enterprise, HA, Cluster)

This version is a direct evolution of the partitioned system described for Irix 6.5. It addresses the needs
of the server/high availability market, where the emphasis is on fault containment. The partitioned
system looks to its users like a multi-host system. Each cell has a unique host name, network address,
root file system, I/O devices, console, etc. From a user or application point of view a cell looks like an
independent machine.

The new addition for this release is the distribution of selected subsystems (the file system and volume
manager) to provide single system image for those subsystems. The main difference between this release
and the previous version of the partitioned system is then that the system will offer a single view of files
from all cells (hosts), and applications from multiple cells will be able to access the same file systems
(or the same files) simultaneously with local file system levels of performance.

Just as in the previous partitioned systems, the system continues to offer full fault containment for
failures occurring on any cell.

2000+

The plan for "after 2000" is to continue to evolve both lines, the single system and the partitioned
system. In the single system side of the world we are considering better (peer-to-peer) distribution for
additional subsystems, reducing the dependency on the golden cell, and we are analyzing the work
involved in multithreaded processes spanning cell boundaries. In the partitioned system, we plan to
continue to add high availability features, and also continue to perform distribution of subsystems to
provide single system image for additional subsystems.

5. Project Status

The following describes the accomplished and planned milestones for the 1999 release of Irix supporting
the Supercomputer world.

Accomplished Milestones

 First-multi cell system Apr 97
 (Cells, messaging, CFS)
 Multi-user system Jul 97
 (Remote exec, dist mmap, AIM7/9, VSX)
 Remote fork, proc migration, sockets Sep 97
 Irix 6.5 feature work Oct 97 - Feb 98
 MPP apps on 128p multi-cell Mar 98
 CXFS direct I/O Apr 98
 Cellular Irix open machine time May 98

Planned Milestones

 CXFS buffered I/O Jul 98
 XVM Aug 98
 256p Internal Milestone Sep 98
 Development complete Mar 99
 Alpha Jun 99
 Beta Aug 99
 Release Oct 99

6. Conclusions

The Cellular Irix project has developed technology for increased scalability and fault containment.
Cellular Irix offers us a long term driving vision and at the same time a series of near-term deliverables
that address the near term needs of our markets. The project has made great progress and it has met its
milestones.

