SECURING THE USER’'S WORK
ENVIRONMENT

Nicholas P.

Cardo

Sterling Software, Inc.
NASA Ames Research Center
Numerical Aerospace Simulation Facility
Moffett Field CA, 94035
Error! Bookmark not defined.

High performancecomputing at theNumerical Aerospac&imulation Facility at NASA Ames ResealCbknter

includes C90's, J90's and Origin2000's. Not only is it necessary to protect these systems from outside attacks, but
also to provide a safe working environment on the systems. Witlghhéools, security anomalies in theser's

work environment can be detected and corrected. Validating proper ownership ajhiestuser's permissions

will reduce the risk of inadverterdata compromise. The detection of extraneous directosied files hidden

amongst user home directories is important for identifying potential compromises. Tharfrsiftheseutilities

detected oveB50,000 files with problems. With periodic scans, automated correction of problemsotakes
minutes. Tools for detectintpese types of problems as well as their development techniques didossed

with emphasis on consistency, portability and efficiency for both UNICOS and IRIX.

INTRODUCTION

Supercomputing plays an important role in today’s research.
Advanced research and time critical projects occupy the
majority of the supercomputing cycles available. Iever
more important to secure this information and protect it
from unauthorized access. The most widely noted problems
are from external attacks on the system resulting in break-
ins and possible theft of research material. Since computers
are a shared resource, a second threatternal
unauthorized access, can kest as dangerous. For
example, two groups of users may be competiagainst
each other for the same project. Obtaining critical data for
an opponent’s design can provide an advantaBeotecting

the research is a shared responsibility between the user and
the system administrator.

A great effort has been spent on securing systéoms
external threats. However, gainimgcess to a system is
only a part of the threat. Although systems may be
relatively safe from external unauthorized access, they may
be extremely vulnerable to internal threatsSecuring
information includes keeping ifrom unauthorizedaccess

within the user community. The magnitude of this problem
is underestimated, as the true extent of this typactifvity
is unknown.

THEPROBLEMS

There are several problems that must be monitored on the
system in order to protect the user’'s resedrom possible
internal unauthorized access. In many casesers are
unaware that their actions have left their reseadetia
openfor unauthorized access. The usesjsecialty is in
their research, not in system administration and security.
Providing the users with security related informatayout
their files should be a service all centers provide.

File Owneship

Many computer centers operate on projedtocations.
That is, a user or group of users is granted a cegaiount

of computer timefor their specific research. Computer
time is typically tracked by an Account ID (ACID) or
Project ID while file group ownership is based on G®up

ID (GID). Grantstypically have a specified life and must
be renewed on some interval. At the time of renewing
allocations, one of four things will happen to the user:

The user is disabled or removed

The user continues with no changes.

The user continues with additional projects.
The user continues with new projects.

PonPE

Problems arise when users continue on with changes to
their projects. While their project allocations arpdated,
what about the ownership of their files? Fexample,

suppose a user of a project changes companies and is now

working on acompeting project with an allocation on the
same computer. Unleggroup ownership ixhanged, the
original company could unknowinglhaccess research in
this user’s directory. Consequently, the extent tlis
problem is bi-directional. The result is that bathmpanies
could potentially gain access to each others work.

The solution to this problem is to periodically scan fads

for all users and compare the group ownership of the file to
the list of groups the wuseractually belongs to.
Discrepancies should be reported and correctaction
taken. Performing this type of scan at NAS identified over
350,000 files with problems. Continued scans helped to
identify a procedural problem with the account conversion
process. The problem turned out to be that ownerships
were only being set on the first day of the neperational
period. Anaccount activated thereaftevould retain the
ownership from the previous operational period.

Another problem area is file ownership as it relates to
filesystem quotas. Typically there are several users
working on thesame project and sharing data. rivany
cases they use a common directory for storing all tthata
files. Depending on how disk quotas are set up, ¢bhidd

be a problem. If the individuals of the same project are
not on the same filesystem, then hiding filtkem their
guota can be done by storing their data in another’s
directory on another filesystem. This type of problem can
be overcome by using one quota fitler all user
filesystems. However, a gogatactice would be to set all
the files in a users directory to be owned by that user. This
also protects against unauthorized access problems.

Home Directory Owneaship and Mode

It is important that the user's home directonyaintains
proper ownership as well as a mode setting which provides
a safe operating environment. Regular comparisons of
home directories against the user’'s properties gaavent
potential problems. Again, in mangases, theusers are
unaware that they've done something to endanger their
work. World writable directories can be devastating to a

user’s research. A world writable directory allows any user
on the system to remove or replace files in that directory,
without permission. In addition, bagtoup ownership can
provide access to unauthorizedsers if grouppermissions
are set. Group permissions allow any user within gratip

the ability to access that file dlirectory. Incorrecigroup
ownership allows the wrong group of userspmtentially
have access to a file.

Home Directory Filesystems

Periodic comparisons of the home directories on the
filesystems against the password file can identify two
potential problems. The first problem is users without a
valid login directory. The second problem is files and
directories that should not exist in the same directory as
users home directories. An easy pldoesomeone tchide
files and directories is amongst the home directories.
Spotting problems by eye is difficult and unreliable due to
the ability to name files or directories similar to valid login
directory names.

rhosts File

Checking the$HOME/.rhosts file for all users carhelp
reduce the risk of external unauthorized acce€hecking

the ownership and mode of the file and the format of the
contents is not sufficient. It is necessary to also chbelt

the hosts listed in the file are valid. Any host tbahnot

be validated should be reported back to the user for
corrective action. In many cases, entries for
decommissioned hosts will be found in the fil€hecking

of this file can also identify violations of account sharing
by comparing the users listed in the host against the user
being checked.

Secure SH €l

The Secure SHell (SSH) package adds nyossibilities
for incorrect configuration problems by the user. SSH
provides the capabilitfor a SHOME/.shosts file which
operates similarly to th&HOME/.rhosts file. Similar
checks need to be performed to tlehosts file as are
done for.rhosts file.

SSH also allows the users to provide entries their

$HOME/.ssh/authorized_keys file for controlled

access. This should beheckedfor account sharing and
suspicious entries.

DEVELOPING APPLICATIONS

There are three design goals for developsegurity-related
tools for UNICOS and IRIX. These are:

1. Speed
2. Flexability
3. Portability

Security tools should be fast in order to obtaocurate
information. Long running tools may not provide a current
accurate evaluation. In addition to accuracy, timeliness of
results is an important factor with any security tool.

Security utilities need to have the flexibility to laelapted
to evolving circumstances armbnfigurations. Anyutility
developed will need t@row with the system. Security
utilities typically have a clear and concise functionality.
Having access to as mucinformation as possible only
enhances the utility’s importance.

Portability_

Any tool developed to perform a security function needs to

be portable. SGI/Cray has already announced the phase out

of traditional CRAY systems and UNICOS, with its
replacement being thewew scalable nodearchitecture
running a version oflIRIX. As centers migratefrom
traditional CRAY systems running UNICOS towards the
newer scalable node architectures such as @reggin2000
running IRIX, the necessity for portability becomes
increasingly important. Eliminating the task of porting
utilities between operating systems allows for more time to
be devoted to the migration of customers without
sacrificing security concerns.

Saipts vasusPrograms

Most security related tools thaperform any type of
directory tree traversal were scripts that utilized fine
command. In order to properlgvaluate potential file
problems, thefind command would have texecute a
custom written program to analyze the file’s attributes.
each file that thefind command encounters, ivould
stat the file in order toevaluate thefind command’s
options thenfork andexec the custom written program
which would againstat the file in order toevaluate the
attributes. In early versions of UNIX, the firmbmmand
provided the only meandor traversing directorytrees
without developing tree traversal code.

For

A relatively unknown and unused function exists in
UNICOS and IRIXthat performs directory tree traversal.
The function ftw , File Tree Walk, can be used by
programs to traverse directory trefeem within a program.
This function calls a defined function within program
passing it the pathname, sdat structure, and identifying
code information. A seconébrm of ftw exists, nftw ,
which also performs the tree traversal but providese
options. On IRIXsystems, both 32 and 64 bit functions
exist.

The gat Structure

The stat structure provides a significant amount of
information about files that can be utilized Isgcurity
related utilities. Usefile fields in thstat structuretake
from <sys/stat.h> are:

st_dev Device Number
st_ino Inode Number
st_mode File Mode
st_nlink File Link Count
st_uid User ID Ownership

st_gid
st_acid

Group ID Ownership
Account ID

st_size File Size in Bytes

st_atime Last Access Timestamp
st_mtime Last Modified Timestamp
st_ctime Last Inode Update Timestamp

Additional information is available for Multi-Level Security
(MLS) and the CRAY Data Migration Facility (DMF).

It is important to understand the three time fields in the
stat structure. The firstst_atime , provides aUNIX
timestamp for the last access time of the file. $heond,
st_mtime , provides a UNIX timestamp for the last modify
time of the file. The thirdst_ctime , provides aUNIX
timestamp for the last time the files attributes were
changed. The lasaccess and lastnodify times can be
reset with theutimes function. However, the only way to
alter st_ctime is modify the inode by opening the
filesystem raw, locating the inode, and changing the
information. Keep in mind that st_ctime is
automatically sewhen any attribute of a file ishanged.
Changing the modification and last access times @alise
st_ctime to be set to the time of the change.
Understanding these three time fields is important in
identifying problems. Suppose someongained
unauthorized access asot to a system. Thigmdividual
then replaced thepasswd program and reset théast

access and lasmodify times back to those of
programs.

original
Unless thehange time is examined, tHde

appears to be the same. The change time also provides an

important clue while investigating this type of situation.
The timestamp inst_ctime will help narrow down the
timeframe in which the file changed.

Using_ftw/nftw

Using ftw is a simple addition to a program. The function
calls work similarly with theexception thatnftw has an
optional flags argument. The flags argumdot nftw
controls additional traversing criteria. There are 4 flags
that can be set:

FTW_PHYS Do not follow softlinks.

FTW_MOUNT Do not cross mount points.

FTW_DEPTH Subdirectories visited first.

FTW_CHDIR Change to each directory before reading

It.

The remaining arguments ftw /nftw are the same. The
first is a starting pathname to begin the search,stmnd
is a function thaftw /nftw will call for each file, the third
is the number of file descriptors to use.

ftw /nftw call a function passing it the pathnamefilked

in stat structurefor the file, flags identifying something
about the file, and witinftw a base offset and level of the
path being traversed.

One popular computer security technique is ni@aintain
accurate listings of alketuid programs on the system.
This would require traversing a filesystem and producing a
listing of all setuid programs and some identifying
information so that if they were to change, vearning
message could be produced. Producing this information is
an easy task with these functions.

main
{
nftw(argv[optind], scantree, 32,
FTW_PHYS|FTW_MOUNT);

}

int scantree(path,sb,code,fcode)
char *path;

struct stat sb;

int code;

struct FTW *fcode;

switch (code) {
case FTW_DNR:

case FTW_NS:
fprintf(stderr,
"no information for %s\n”,path);
case FTW_D:
case FTW_DP:
case FTW_SL:
return(0);
case FTW_F:
break;
}
if (sb->st_mode & S_ISUID)
printf(“%s %d %d %o0\n”,path,
sb->st_uid,sh->st_ctime
sbh->st_mode);
return(0);

}

The find command could be used to accomplish this
however it would require that a program be written to
obtain theuid andctime . This sample prograrshows
how the functionality of thefind command can be
performed within a single program.

Reading_the passwd File

Another useful capability is reading thetc/passwd file
from within a program. Using functions such as
getpwent(), getpwnam(), or getpwuid() will
return a filled-in structure containing all the information
from thepasswd file.

Similarly, the functionggetgrent() , getgrnam(), or
getgrgid() will return a filled-in structurecontaining
information about agroup. The possibility exists that the
number of members of a group widhuse multiple entries
in the group file. Caution should bexercised toalways
continue reading the group file until the groupme
changes.

These functions provide quick easy ways tbtain
information about users that can be used in acgnning
program forcomparisons. There are a set of routines
explicitly written to extract informatiofirom the UNICOS
UDB. However,the purpose of this paper is fiscuss
portable security utilities so the UDB functions will not be
discussed.

USEFUL UTILITIES

Combining the fundamental functions alreadyscussed
into useful programs can produce fast and reliadeurity

related information. Here are just a few of theany
utilities that can be developed.

H omeck

Making sure that all users have a valid login directory and
that all directories on the home filesystems haxadid
users is usefuffor identifying problems. By using the
information in /etc/groups and /etc/passwd , the
proper login directory for every user can be identifeddng

with proper ownership. Performing a comparidogtween

the passwd file and the home filesystems will identify
users with missing login directories, login directories with
improper ownership, and directories on thlkeome
filesystems that don’t correspond to valid users. Performing
a check on the mode of the login directory can help enforce
any established policies or at the minimum, warn the user
of the potential problems.

Remotck

There are many ways to establish connectionsytstems

and gain authorized access. It is also very eadyetmme
complacent with these access methods and not perform the
proper maintenance on access authorization files.

Using the/etc/passwd file for identifying the users login
directory, checks on alternate login configuration files can
be performed. Checking thehosts and.shosts files

for valid entries and that each host exists or checking the
.ssh/authorized_keys file can help find problems. In

many cases, when systems are decommissioned, the entries

are left in these files leaving potential vulnerabilities.
Many users unknowinglyleave themselves open to
vulnerabilities.

Scandir

It is crucial to periodically validate all user files on the
filesystems. This will help to eliminate vulnerabilities due
to incorrect ownership or poor choice for the file mode. By
using the informatioravailable inboth the /etc/group

and /etc/passwd file, each files ownership can be
evaluated. Additional checking can be performed in the
event that UNICOS ACIDs or IRIX Project Ids are used.

Sophisticated evaluation criteria can be added totypse
of directory tree traversal utility. Problems suchrast
owned files in the user’s directory or files withoutvalid
owner in a user’s directory could easily be detected.

Softlinks are another potential problem area. If softlinks
cannot be resolved, that is the true file doesn't exdstta
can be mistakenly or maliciously substituted. This is

especially true when the softlink resolves to another user’'s
directory. Dangling softlinks should be reported to the user
so that corrective action can be taken.

CorrectiveActions

Each utility should be constructed to allder automated
corrective actions. Corrective actions shouliclude
performing appropriate logging, making theecessary
notifications, and correcting ownerships andile
permissions.

Detecting the problem is only thfirst part of correcting
problems. Taking the necessary action based on
encountered problems is a necessity and cantiime
consuming. By building the corrective actions into the
utility, problems can be speedily corrected aptbper
logging and notifications made.

SUMMARY

It is just as important to maintain a safe asdcure
environmentfor the user to work is as it is to protect the
system from external vulnerabilities. As supercomputers
become more powerful, there will be an increase in the
demandfor time on these systems. As more and more
research is performed on these systems, the importance of
protecting the users from internal vulnerabilities increases.

Both IRIX and UNICOS support thenecessary library
functions to allow for powerful and portable security
utilities to be developed. What has worked in the past is
not sufficient for what is needed now or in the future. It is
time to take advantage of the advancementsliirary
functions and system calls to develop npawerful and
portable utilities.

No matter how safe a system believed to be, it is
vulnerable. Examining these types dhternal
vulnerabilities can be an eye opening experience. The
responsibility for finding and correcting these problems falls
on both the system/security administrator and the user. No
system is 100% safe...

ACKNOWLEDGMENTS

This work was performed by Sterling Software at the
Numerical Aerospace Simulation Facility AIASA Ames
Research Center under NASA contract NAS2-13619.

