
S E C U R I N G T H E U S E R ’ S W O R K
E N V I R O N M E N T

Nicholas P. Cardo
Sterling Software, Inc.

NASA Ames Research Center
Numerical Aerospace Simulation Facility

Moffett Field CA, 94035
Error! Bookmark not defined.

High performance computing at the Numerical Aerospace Simulation Facility at NASA Ames Research Center
includes C90's, J90's and Origin2000's. Not only is it necessary to protect these systems from outside attacks, but
also to provide a safe working environment on the systems. With the right tools, security anomalies in the user's
work environment can be detected and corrected. Validating proper ownership of files against user's permissions
will reduce the risk of inadvertent data compromise. The detection of extraneous directories and files hidden
amongst user home directories is important for identifying potential compromises. The first runs of these utilities
detected over 350,000 files with problems. With periodic scans, automated correction of problems takes only
minutes. Tools for detecting these types of problems as well as their development techniques will be discussed
with emphasis on consistency, portability and efficiency for both UNICOS and IRIX.

 I N T R O D U C T I O N

Supercomputing plays an important role in today’s research.
Advanced research and time critical projects occupy the
majority of the supercomputing cycles available. It is ever
more important to secure this information and protect it
from unauthorized access. The most widely noted problems
are from external attacks on the system resulting in break-
ins and possible theft of research material. Since computers
are a shared resource, a second threat, internal
unauthorized access, can be just as dangerous. For
example, two groups of users may be competing against
each other for the same project. Obtaining critical data for
an opponent’s design can provide an advantage. Protecting
the research is a shared responsibility between the user and
the system administrator.

A great effort has been spent on securing systems from
external threats. However, gaining access to a system is
only a part of the threat. Although systems may be
relatively safe from external unauthorized access, they may
be extremely vulnerable to internal threats. Securing
information includes keeping it from unauthorized access

within the user community. The magnitude of this problem
is underestimated, as the true extent of this type of activity
is unknown.

 T H E P R O B L E M S

There are several problems that must be monitored on the
system in order to protect the user’s research from possible
internal unauthorized access. In many cases, users are
unaware that their actions have left their research data
open for unauthorized access. The user’s specialty is in
their research, not in system administration and security.
Providing the users with security related information about
their files should be a service all centers provide.

 F i l e Ow n e r s h i p

Many computer centers operate on project allocations.
That is, a user or group of users is granted a certain amount
of computer time for their specific research. Computer
time is typically tracked by an Account ID (ACID) or
Project ID while file group ownership is based on the Group
ID (GID). Grants typically have a specified life and must
be renewed on some interval. At the time of renewing
allocations, one of four things will happen to the user:

1. The user is disabled or removed
2. The user continues with no changes.
3. The user continues with additional projects.
4. The user continues with new projects.

Problems arise when users continue on with changes to
their projects. While their project allocations are updated,
what about the ownership of their files? For example,
suppose a user of a project changes companies and is now
working on a competing project with an allocation on the
same computer. Unless group ownership is changed, the
original company could unknowingly access research in
this user’s directory. Consequently, the extent of this
problem is bi-directional. The result is that both companies
could potentially gain access to each others work.

The solution to this problem is to periodically scan all files
for all users and compare the group ownership of the file to
the list of groups the user actually belongs to.
Discrepancies should be reported and corrective action
taken. Performing this type of scan at NAS identified over
350,000 files with problems. Continued scans helped to
identify a procedural problem with the account conversion
process. The problem turned out to be that ownerships
were only being set on the first day of the new operational
period. An account activated thereafter would retain the
ownership from the previous operational period.

Another problem area is file ownership as it relates to
filesystem quotas. Typically there are several users
working on the same project and sharing data. In many
cases they use a common directory for storing all their data
files. Depending on how disk quotas are set up, this could
be a problem. If the individuals of the same project are
not on the same filesystem, then hiding files from their
quota can be done by storing their data in another’s
directory on another filesystem. This type of problem can
be overcome by using one quota file for all user
filesystems. However, a good practice would be to set all
the files in a users directory to be owned by that user. This
also protects against unauthorized access problems.

 H o me Di r e c t o r y Ow n e r s h i p and Mo d e

It is important that the user’s home directory maintains
proper ownership as well as a mode setting which provides
a safe operating environment. Regular comparisons of
home directories against the user’s properties can prevent
potential problems. Again, in many cases, the users are
unaware that they’ve done something to endanger their
work. World writable directories can be devastating to a

user’s research. A world writable directory allows any user
on the system to remove or replace files in that directory,
without permission. In addition, bad group ownership can
provide access to unauthorized users if group permissions
are set. Group permissions allow any user within that group
the ability to access that file or directory. Incorrect group
ownership allows the wrong group of users to potentially
have access to a file.

 H o me Di r e c t o r y F i l e s y s t e m s

Periodic comparisons of the home directories on the
filesystems against the password file can identify two
potential problems. The first problem is users without a
valid login directory. The second problem is files and
directories that should not exist in the same directory as
users home directories. An easy place for someone to hide
files and directories is amongst the home directories.
Spotting problems by eye is difficult and unreliable due to
the ability to name files or directories similar to valid login
directory names.

 . r h o s t s F i l e

Checking the $HOME/.rhosts file for all users can help
reduce the risk of external unauthorized access. Checking
the ownership and mode of the file and the format of the
contents is not sufficient. It is necessary to also check that
the hosts listed in the file are valid. Any host that cannot
be validated should be reported back to the user for
corrective action. In many cases, entries for
decommissioned hosts will be found in the file. Checking
of this file can also identify violations of account sharing
by comparing the users listed in the host against the user
being checked.

 S e c u r e SH e l l

The Secure SHell (SSH) package adds more possibilities
for incorrect configuration problems by the user. SSH
provides the capability for a $HOME/.shosts file which
operates similarly to the $HOME/.rhosts file. Similar
checks need to be performed to the .shosts file as are
done for .rhosts file.

SSH also allows the users to provide entries in their
$HOME/.ssh/authorized_keys file for controlled
access. This should be checked for account sharing and
suspicious entries.

 D E V E L O P I N G A P P L I C A T I O N S

There are three design goals for developing security-related
tools for UNICOS and IRIX. These are:

1. Speed
2. Flexability
3. Portability

Security tools should be fast in order to obtain accurate
information. Long running tools may not provide a current
accurate evaluation. In addition to accuracy, timeliness of
results is an important factor with any security tool.

Security utilities need to have the flexibility to be adapted
to evolving circumstances and configurations. Any utility
developed will need to grow with the system. Security
utilities typically have a clear and concise functionality.
Having access to as much information as possible only
enhances the utility’s importance.

 P o r t a b i l i t y

Any tool developed to perform a security function needs to
be portable. SGI/Cray has already announced the phase out
of traditional CRAY systems and UNICOS, with its
replacement being the new scalable node architecture
running a version of IRIX. As centers migrate from
traditional CRAY systems running UNICOS towards the
newer scalable node architectures such as the Origin2000
running IRIX, the necessity for portability becomes
increasingly important. Eliminating the task of porting
utilities between operating systems allows for more time to
be devoted to the migration of customers without
sacrificing security concerns.

 S c r i p t s ve r s u s P r o g r a m s

Most security related tools that perform any type of
directory tree traversal were scripts that utilized the find
command. In order to properly evaluate potential file
problems, the find command would have to execute a
custom written program to analyze the file’s attributes. For
each file that the find command encounters, it would
stat the file in order to evaluate the find command’s
options then fork and exec the custom written program
which would again stat the file in order to evaluate the
attributes. In early versions of UNIX, the find command
provided the only means for traversing directory trees
without developing tree traversal code.

A relatively unknown and unused function exists in
UNICOS and IRIX that performs directory tree traversal.
The function ftw , File Tree Walk, can be used by
programs to traverse directory trees from within a program.
This function calls a defined function within a program
passing it the pathname, a stat structure, and identifying
code information. A second form of ftw exists, nftw ,
which also performs the tree traversal but provides more
options. On IRIX systems, both 32 and 64 bit functions
exist.

 T h e st a t St r u c t u r e

The stat structure provides a significant amount of
information about files that can be utilized by security
related utilities. Usefile fields in the stat structure take
from <sys/stat.h> are:

st_dev Device Number
st_ino Inode Number
st_mode File Mode
st_nlink File Link Count
st_uid User ID Ownership
st_gid Group ID Ownership
st_acid Account ID
st_size File Size in Bytes
st_atime Last Access Timestamp
st_mtime Last Modified Timestamp
st_ctime Last Inode Update Timestamp

Additional information is available for Multi-Level Security
(MLS) and the CRAY Data Migration Facility (DMF).

It is important to understand the three time fields in the
stat structure. The first, st_atime , provides a UNIX
timestamp for the last access time of the file. The second,
st_mtime , provides a UNIX timestamp for the last modify
time of the file. The third, st_ctime , provides a UNIX
timestamp for the last time the files attributes were
changed. The last access and last modify times can be
reset with the utimes function. However, the only way to
alter st_ctime is modify the inode by opening the
filesystem raw, locating the inode, and changing the
information. Keep in mind that st_ctime is
automatically set when any attribute of a file is changed.
Changing the modification and last access times will cause
st_ctime to be set to the time of the change.
Understanding these three time fields is important in
identifying problems. Suppose someone gained
unauthorized access as root to a system. This individual
then replaced the passwd program and reset the last

access and last modify times back to those of original
programs. Unless the change time is examined, the file
appears to be the same. The change time also provides an
important clue while investigating this type of situation.
The timestamp in st_ctime will help narrow down the
timeframe in which the file changed.

 U s i n g ft w/ n f t w

Using ftw is a simple addition to a program. The function
calls work similarly with the exception that nftw has an
optional flags argument. The flags argument for nftw
controls additional traversing criteria. There are 4 flags
that can be set:
FTW_PHYS Do not follow softlinks.
FTW_MOUNT Do not cross mount points.
FTW_DEPTH Subdirectories visited first.
FTW_CHDIR Change to each directory before reading

it.

The remaining arguments to ftw /nftw are the same. The
first is a starting pathname to begin the search, the second
is a function that ftw /nftw will call for each file, the third
is the number of file descriptors to use.

ftw /nftw call a function passing it the pathname, a filled
in stat structure for the file, flags identifying something
about the file, and with nftw a base offset and level of the
path being traversed.

One popular computer security technique is to maintain
accurate listings of all setuid programs on the system.
This would require traversing a filesystem and producing a
listing of all setuid programs and some identifying
information so that if they were to change, a warning
message could be produced. Producing this information is
an easy task with these functions.

main
{

nftw(argv[optind], scantree, 32,
FTW_PHYS|FTW_MOUNT);

}
int scantree(path,sb,code,fcode)
char *path;
struct stat sb;
int code;
struct FTW *fcode;

switch (code) {
case FTW_DNR:

case FTW_NS:
fprintf(stderr,

”no information for %s\n”,path);
case FTW_D:
case FTW_DP:
case FTW_SL:

return(0);
case FTW_F:

break;
}
if (sb->st_mode & S_ISUID)

printf(“%s %d %d %o\n”,path,
sb->st_uid,sb->st_ctime
sb->st_mode);

return(0);
}

The find command could be used to accomplish this
however it would require that a program be written to
obtain the uid and ctime . This sample program shows
how the functionality of the find command can be
performed within a single program.

 R e a d i n g th e pa s s w d F i l e

Another useful capability is reading the /etc/passwd file
from within a program. Using functions such as
getpwent(), getpwnam(), or getpwuid() will
return a filled-in structure containing all the information
from the passwd file.

Similarly, the functions getgrent() , getgrnam(), or
getgrgid() will return a filled-in structure containing
information about a group. The possibility exists that the
number of members of a group will cause multiple entries
in the group file. Caution should be exercised to always
continue reading the group file until the group name
changes.

These functions provide quick easy ways to obtain
information about users that can be used in any scanning
program for comparisons. There are a set of routines
explicitly written to extract information from the UNICOS
UDB. However, the purpose of this paper is to discuss
portable security utilities so the UDB functions will not be
discussed.

 U S E F U L UT I L I T I E S

Combining the fundamental functions already discussed
into useful programs can produce fast and reliable security

related information. Here are just a few of the many
utilities that can be developed.

 H o me c k

Making sure that all users have a valid login directory and
that all directories on the home filesystems have valid
users is useful for identifying problems. By using the
information in /etc/groups and /etc/passwd , the
proper login directory for every user can be identified along
with proper ownership. Performing a comparison between
the passwd file and the home filesystems will identify
users with missing login directories, login directories with
improper ownership, and directories on the home
filesystems that don’t correspond to valid users. Performing
a check on the mode of the login directory can help enforce
any established policies or at the minimum, warn the user
of the potential problems.

 R e m o t c k

There are many ways to establish connections to systems
and gain authorized access. It is also very easy to become
complacent with these access methods and not perform the
proper maintenance on access authorization files.

Using the /etc/passwd file for identifying the users login
directory, checks on alternate login configuration files can
be performed. Checking the .rhosts and .shosts files
for valid entries and that each host exists or checking the
.ssh/authorized_keys file can help find problems. In
many cases, when systems are decommissioned, the entries
are left in these files leaving potential vulnerabilities.
Many users unknowingly leave themselves open to
vulnerabilities.

 S c a n d i r

It is crucial to periodically validate all user files on the
filesystems. This will help to eliminate vulnerabilities due
to incorrect ownership or poor choice for the file mode. By
using the information available in both the /etc/group
and /etc/passwd file, each files ownership can be
evaluated. Additional checking can be performed in the
event that UNICOS ACIDs or IRIX Project Ids are used.

Sophisticated evaluation criteria can be added to this type
of directory tree traversal utility. Problems such as root
owned files in the user’s directory or files without a valid
owner in a user’s directory could easily be detected.

Softlinks are another potential problem area. If softlinks
cannot be resolved, that is the true file doesn’t exist, data
can be mistakenly or maliciously substituted. This is

especially true when the softlink resolves to another user’s
directory. Dangling softlinks should be reported to the user
so that corrective action can be taken.

 C o r r e c t i v e A c t i o n s

Each utility should be constructed to allow for automated
corrective actions. Corrective actions should include
performing appropriate logging, making the necessary
notifications, and correcting ownerships and file
permissions.

Detecting the problem is only the first part of correcting
problems. Taking the necessary action based on
encountered problems is a necessity and can be time
consuming. By building the corrective actions into the
utility, problems can be speedily corrected and proper
logging and notifications made.

 S U M M A R Y

It is just as important to maintain a safe and secure
environment for the user to work is as it is to protect the
system from external vulnerabilities. As supercomputers
become more powerful, there will be an increase in the
demand for time on these systems. As more and more
research is performed on these systems, the importance of
protecting the users from internal vulnerabilities increases.

Both IRIX and UNICOS support the necessary library
functions to allow for powerful and portable security
utilities to be developed. What has worked in the past is
not sufficient for what is needed now or in the future. It is
time to take advantage of the advancements in library
functions and system calls to develop new powerful and
portable utilities.

No matter how safe a system is believed to be, it is
vulnerable. Examining these types of internal
vulnerabilities can be an eye opening experience. The
responsibility for finding and correcting these problems falls
on both the system/security administrator and the user. No
system is 100% safe…

 A C K N O W L E D G M E N T S

This work was performed by Sterling Software at the
Numerical Aerospace Simulation Facility at NASA Ames
Research Center under NASA contract NAS2-13619.

