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Abstract

Direct Volume Rendering (DVR) is a powerful volume visualization technique for exploring complex
three and four-dimensional scalar data sets. Unlike traditional surface-�tting approaches, which map
volume data into geometric primitives and can thus bene�t greatly from widely available commercial
graphics hardware, computationally-expensive DVR is performed, with rare exception exclusively on the
CPU. Fortunately DVR algorithms tend to parallelize readily and much prior work has been done to
produce parallel volume renderers capable of visualizing static datasets in real-time. Our contribution to
the �eld is a shared-memory implementation of a parallel rendering package that takes advantage of high-
bandwidth networking and storage to deliver volume rendering of time-varying datasets at interactive
rates. We discuss our experiences with the system on the SGI Origin2000 supercomputer.

1 Introduction

In recent years, Direct Volume Rendering (DVR) has proven to be a powerful tool for the analysis of
time-varying, three-dimensional scalar datasets associated with the atmospheric, oceanic and astrophysical
sciences. The bene�ts of DVR, probabilistic data classi�cation [4], and direct projection of volume sam-
ples are key to producing insightful visualizations of simulation results, rich with amorphous and uid-like
features [3]. Animations of spatial rotations at a single instance of time can clarify three-dimensional struc-
ture, while temporal animations can show the evolution of three-dimensional structure and depict complex
dynamics.

Visual data exploration is an inherently interactive process. To fully exploit the power of DVR as
an analysis tool, interactive frame rates (at least 5Hz) must be achieved. Static images or animations
produced through a batch process that represent complex 3D phenomena may be of limited value. Invariably,
features of interest are obscured, improperly classi�ed, or poorly lit. Unlike more conventional visualization
techniques, which map data into geometric primitives that can then be e�ciently displayed using hardware
graphics accelerators, DVR algorithms generally do not bene�t from commercially available hardware: the
computationally expensive process must be carried out entirely on the CPU.

Fortunately, DVR algorithms tend to parallelize nicely, and much work has been done in the area of
accelerating DVR methods for static data [5, 7, 14, 8, 12, 1, 9, 13]. Interactive volume rendering of single
time-steps is now within the reach of many researchers. However, temporal animations must still be produced
through a batch process. Researchers can use interactive tools to determine classi�cation functions, color
mappings, and to select view points, but the production of the temporal animation must then be carried
out as a batch process and subsequently viewed as a pre-recorded animation. If initial viewing parameters
selected from representative time-steps are not correct for the entire time-series, the painstaking, error-prone
process must be repeated.
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Time-varying datasets impose additional costs that have made interactive rendering di�cult to achieve.
The principal culprit is I/O. Rendering a moderately sized (2563) dataset made up of 8-bit voxels at a frame
rate of 10 Hz would require an input pipe capable of delivering a sustained bandwidth of over 150 MBytes/sec.
Though improvements in online magnetic storage technology have not kept pace with processor technology
advances, the availability of both software and hardware-based RAID systems, which exploit parallelism by
using arrays of disk drives, has provided a practical means to achieve sustained I/O transfer rates in excess
of 100 MBytes/second [11].

In [2], we describe a volume-rendering system based on a parallel implementation of Lacroute's Shear-
Warp Factorization algorithm [6], that is capable of rendering and displaying to the desktop, time-varying
2562� 175 datasets at 4 Hz on a 16-processor, Distributed Shared Memory (DSM), HP Exemplar SPP2000.
Our volume rendering system, "Volsh," achieves this result by taking advantage of commercially available
multiprocessors and high-bandwidth networking and storage. In this paper we describe our preliminary
experiences with Volsh on another DSM: an SGI Origin2000.

The remainder of this paper is organized in four sections: Section 2 briey discusses the rendering
algorithm and our parallelization strategy. A detailed description appears in [2]. Section 3 we presents an
overview of the rendering system and discusses its implementation. Section 4 presents performance results
for Volsh running on an SGI Origin2000. Section 5 discusses these results and suggests areas for future work.

2 The Parallel Renderer

The Volsh volume rendering system is based on a parallel implementation of the Shear-Warp Factorization
algorithm. The serial version of this algorithm is among the fastest reported in the research literature.
There have been a number of successful parallel implementations, spanning a variety of di�erent computer
architectures [5, 12, 1]. Parallel implementations are capable of rendering moderately sized (2563) static
datasets at interactive rates. We extend an existing serial implementation of the Shear-Warp Factorization
algorithm [5], parallelizing the code and optimizing its support of time-varying data.

2.1 Shear-Warp Factorization Algorithm

The Shear-Warp algorithm operates by applying an a�ne viewing transformation to transform object space
into an intermediate coordinate system called sheared object space. Sheared object space is de�ned by
construction such that all viewing rays are parallel to the third coordinate axis and perpendicular to the
volume slices. Volumes are assumed to be sampled on a rectilinear grid. For a parallel projection, the
viewing transformation is simply a series of translations. Note that because all voxels are translated by the
same amount within a given slice, the resampling weights are invariant within each slice. After the slices
have been translated and resampled, they may be e�ciently composited in front-to-back order using the
over operator to produce an intermediate, warped image. The distorted, intermediate image must then be
resampled into �nal image space.

The Shear-Warp algorithm can operate directly on raw data, or the data may �rst be classi�ed in a pre-
processing step. The pre-processing step calculates voxel normals and opacities and uses run-length encoding
(RLE) to record contiguous runs of transparent voxels. The advantages of using RLE data are twofold: 1)
The renderer can exploit coherency in the dataset, quickly skipping over transparent voxels. 2) Expensive
calculations, such as computing the voxel normals, are performed o�ine, reducing the amount of work the
renderer is required to perform. The disadvantages to rendering RLE data are: 1) The classi�cation function
is �xed and cannot be modi�ed during rendering. 2) The storage requirements for the RLE data may be
substantially larger than the original, scalar data.

Execution time for the RLE algorithm is dominated by three calculations: 1) Projection of the volume
into the intermediate image. 2) Warping the intermediate image into the �nal image. 3) Computing the
view-dependent portion of a lookup table used for shading. The raw data algorithm must perform the
additional step of computing gradient vectors and determining voxel opacity values. We parallelize each of
these computational phases and synchronize all processors between each computational phase.
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Projection of the 3D volume, which involves resampling and compositing the volume slices, is by far
the most computationally expensive task in the RLE algorithm and also the most challenging to e�ciently
implement in parallel. To minimize processor synchronization, we partition tasks based on an image-space
decomposition of the intermediate image. Each processor is responsible for computing a number of scanlines
in the intermediate (warped) image. The image is partitioned into small groups of contiguous scanlines.
Initially processors are statically assigned groups of scanlines in cyclical fashion. As the calculation proceeds,
dynamic task stealing is used to perform load balancing [9]. Each processor maintains its own queue of
groups of scanlines. As soon as a processor �nishes all its groups, it tries to steal a group of scanlines from
its neighbors. This process continues until the projection is complete. Our task-stealing algorithm di�ers
from Levoy's in that processors only look to a limited number of neighbors for additional work.

Parallelizing the 8k-entry shading lookup table, typically accounting for 10% of the total calculation
time in the RLE algorithm, is trivial and results in an embarrassingly parallel computation. There are no
interdependencies between table entries; we simply divide the table entry computations equally among the
processors.

Resampling the intermediate image is the least expensive of these tasks, typically representing 5% of the
total calculation for the RLE renderer. We partition the workload by dividing the �nal image into P groups
of adjacent scanlines, where P is the number of processors, and statically assign one group of scanlines to
each processor. There are no pixel interdependencies in the �nal image, thus no synchronization is required.

The raw data algorithm requires the additional step of classifying the data and computing normal vectors.
Classi�cation is speci�ed via a user-de�ned lookup table. Normalized normal vectors, which are estimated
using the central di�erences method and encoded as 13-bit integers, are calculated using lookup tables
to avoid expensive division and square root operations. We easily parallelize the classi�cation step by
partitioning the volume into contiguous, axis-aligned slabs and assigning each processor a single slab.

2.1.1 Time-Varying Data

Time-varying data incur additional execution costs primarily due to I/O. The techniques we employ to help
address these costs are to utilize high-bandwidth, striped disk arrays and to pipeline the rendering and
reading tasks, "hiding" the I/O behind the rendering calculations. We spawn separate I/O and rendering
threads, double-bu�ering reads of the data volume �les. We use a parallel memory copy to move the input
data from the read bu�er into the application bu�er. If I/O time is less than rendering time, we can mask
the cost of I/O and theoretically achieve rendering rates comparable to that for static data. If the I/O time
is greater than that of the rendering calculation, then we are I/O bound and limited by the rate at which
we can read and distribute data.

There are tradeo�s to be considered between the RLE and raw data rendering algorithms when addressing
time-varying data. The RLE algorithm is typically faster than the raw data algorithm because it exploits
data coherency. However, the RLE data volumes may be substantially larger than the original raw data
volumes and have correspondingly greater I/O requirements. The RLE data volumes contain additional
information (gradient and opacity) and three view-dependent copies of the volume need to be maintained.
The exact size of the RLE volume is largely determined by the user-de�ned classi�cation function: the more
voxels that are mapped to zero opacity, the smaller the RLE volume.

3 System Overview and Implementation

The Volsh rendering system supports two user interfaces. The �rst is a batch utility, driven by a Tcl script.
The Tcl interface facilitates batching complex rendering tasks and gathering performance measurements. A
list of rendering instructions and data volumes are ingested, and a stream of RGB images is output to a �le.

The second user interface is an interactive application with an X11-based graphical user interface (GUI).
Large multiprocessor systems typically do not have directly attached display devices. To address this issue,
the interactive system is implemented as two separate UNIX processes that communicate via sockets. One
process runs on the parallel machine, performing rendering and managing the GUI. The second process runs
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on a display host and is responsible for posting the 24-bit RGB imagery, transmitted from the renderer, to
the frame bu�er via the OpenGL API.

The original serial-rendering algorithm and the extensions we've added are implemented in the C lan-
guage. The user interfaces are implemented in C and C++. Parallelization is accomplished using POSIX
threads (pthreads), making the software portable to most shared-memory architectures.

Voxels in the raw datasets are 8-bit quantities. RLE voxels are 32 bits: the original sample value is
represented by 8 bits and the remaining 24 bits are used to represent gradient magnitude (8 bits) and an
encoded representation of a gradient (13 bits).

3.1 Hardware

The results reported in the performance section were collected on a 64-node, 128-processor SGI Origin2000.
We report results obtained using 1 to 16 processors. Each processor is a 250 MHz R10000 CPU with 4
MBytes of cache. Each node board has 256 MBytes of memory. The disk subsystem is a level 0 RAID,
implemented with IRIX software striping, consisting of 28 drives striped across 5 Fibre Channel controllers,
using a stripe unit of 65 Kbytes per drive. Each disk is a 9 GB Seagate drive with a 7200 rpm rotation rate.
The maximum sustained bandwidth that we have measured for read operations on the disk array using direct
I/O and 4 MByte reads is 300 MBytes per second. For indirect I/O, the maximum sustained rate we've
measured is 90MB's per second. Our volume rendering system is currently implemented using indirect I/O.
Performance measurements on the disk array were made with the xdd utility [11]. The Origin is networked
to a display host, an Onyx2/IR, via switched 100 Mbit Ethernet.

4 Performance

We use two di�erent datasets to evaluate the performance of the rendering system. The Quasi-Geostrophic
(QG) data (see Figure 1) are computer simulation results depicting the formation of coherent structures in
rotating, incompressible, turbulent uid ow. These data and the classi�cation functions chosen for them
are of particular interest to us in exploring performance characteristics because they are dense and rich with
amorphous features; their computational needs, and in the case of the RLE version, their I/O needs are
extremely demanding. The second dataset was produced from a simulation of the wintertime stratospheric
polar vortex [10]. The polar vortex (PV) data (see Figure 2) are relatively sparse and opaque, exhibiting a
great deal of coherence throughout the entire simulation; their computational and I/O needs are much more
easily satis�ed.

Table 1 lists the datasets, their spatial resolution, the size of each raw time-step, and the average size of
each RLE time-step. In Table 1, note that the relative sizes of a raw and corresponding RLE dataset provide
a measure of spatial coherency. The larger the RLE dataset relative to the raw dataset, the less coherency
exists. The RLE version of the QG dataset is over �ve times as large as the raw version. However, the RLE
version of the PV dataset is not much larger than the raw version. Note also that the spatial resolution of
the PV volumes is over four times that of the QG volumes.

In the experiments reported below, all data are read directly from disk. Individual volume �les are
concatenated into larger, multi-volume �les to improve I/O performance. The kernel bu�er cache was

Dataset Resolution Raw Size (MB) Average RLE Size (MB)

QG128 128x128x128 2.10 10.78
PV256 256x256x149 9.76 13.70

Table 1: Datasets, their respective voxel resolutions, individual time-step sizes for raw data, and average
time-step sizes for RLE data.
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Figure 1: QG data Figure 2: PV data

ushed prior to running each experiment. Unless otherwise speci�ed, all results are for single-light, Phong-
illuminated, monoscopic, three-channel (RGB), 256x256 resolution imagery. Each experiment renders 100
time-steps from a �xed viewpoint.

Figure 3 plots frame rates vs. number of processors for rendering raw and RLE versions of the QG and
PV datasets. We see from Figure 3 that, with the exception of the raw version of the PV dataset, all of the
datasets can be rendered at interactive rates. We also observe that both RLE datasets reach a peak frame
rate on relatively few processors, and then performance goes at and even declines for some processor runs.
Contrarily, the performance curves for the raw data, while never achieving the same frame rate as the RLE
data, steadily increase from 1 to 16. We examine both of these phenomena more closely below. Last, we note
that despite the much greater spatial resolution of the PV data, the rendering times for it are comparable
to that of the lower resolution QG data, particularly in the case of the RLE versions of the datasets. This
result reects the greater coherency found within the PV data.

Figure 4 plots execution time of the major components of the rendering system for RLE data vs. number
of processors. The render parameter includes projection, shade-table calculation, and the 2D image warp.
The i overhead parameter depicts the overhead costs of performing double-bu�ered input. These overheads
essentially reect the cost of copying data from the double-bu�er into the application space using a parallel
memory copy. We note that the parallel memory copy does not scale beyond four processors. We discuss
this issue in the next section. The last parameter, i wait, depicts the unmaskable, double-bu�ered I/O time
for reading data. When the task is computationally (render) bound, i wait is close to zero. As the rendering
process is sped up through the addition of more processors, the task can become I/O bound, and i wait will
grow. Growth in the i wait parameter corresponds to the points in Figure 3 where performance goes at for
the RLE versions of the datasets.

Figure 5 plots execution time of the major components of the rendering system for raw data vs. number
of processors. The render and i overhead parameters represent the same information as in Figure 4. There is
no corresponding i wait parameter in Figure 5 because the input wait time is zero for all of the processor runs;
the raw datasets, because of their smaller size and increased rendering costs, are completely computationally
bound. The gradient parameter depicts the execution time to compute normal gradients required by the raw
datasets. We observe that the gradient calculation represents a signi�cant portion of the total display time,
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Figure 3: Frame rates of the QG and PV datasets
using RLE (solid line) and raw data (dashed line).

   1  2  4  6  8 10 12 14 16   
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

render     

i_overhead

i_wait    

Number of processors

T
im

e 
in

 s
ec

on
ds

/p
er

 fr
am

e

Figure 4: Timing distribution of rendering process
for RLE versions of the QG (left bar) and PV (right
bar) datasets showing rendering time, render; over-
head imposed by double bu�ering, i overhead; and
non-maskable read time, i wait.

taking anywhere from 1/3 to 1/2 of the render time. We also observe that gradient calculation scales poorly.
The PV data achieves an e�ciency of only 50% on 16 processors, while the rendering calculation achieves
an e�ciency of 90%.

Figure 6 shows speedup for the projection calculation, the most expensive component of the rendering
algorithm, for all four datasets. We observe that the speedup varies widely. The raw version of the QG
dataset demonstrates the best e�ciency, while the RLE version of this same dataset demonstrates the worst
e�ciency. Both the raw and RLE versions of the QG data perform comparably well.

5 Results

We have demonstrated that Volsh is capable of delivering interactive rendering rates for time-varying data
using, in some cases, relatively few processors on the Origin2000 class of supercomputers. While interactive
rendering is possible, the multiprocessor speedup associated with various components of the rendering system
- the gradient, projection calculation, and parallel memory copy - is not ideal. We conclude this paper with
some discussion about why these components are not exhibiting better performance. As this paper goes to
press, we note that NCAR's Origin system will have been on the machine room oor for only a matter of
weeks. The opportunity to perform a rigorous analysis of these problems is not available to us and we can
only o�er our speculations at this time.

We believe that all of the performance problems we've witnessed and discussed are related to a single
issue: memory layout. The parallel implementation of Volsh targets a generic shared-memory system. No
architecture-speci�c assumptions have been made. Early indications suggest that the Origin's DSM architec-
ture demands greater consideration with regard to memory placement to achieve optimal performance. Our
simplisitic initial approach results in having all memory allocated to a single node board. As the number of
processors used by the application is increased, the contention for that single node board becomes signi�cant.
This contention is particularly evident by the poor scaling of the parallel memory copy which performs no
calculation and whose performance is completely characterized by memory access speeds.

Memory allocation problems may be futher compounded by our choice of pthreads for our parallelization
construct. The pthread interface provides no facilities for specifying any a�nity between a process and
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Figure 5: Timing distribution of rendering process
for raw versions of the PV (left bar) and QG (right
bar) datasets showing rendering time, render; gra-
dient calculation time, gradient; and I/O overhead
imposed by double bu�ering, i overhead.
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Figure 6: Speedup curve for projection calculation
of RLE and raw versions of QG and PV data.

memory. There is no way to ensure that a thread is run on any particular processor and therefore no way
to ensure that it accesses only local memory. Consequently, we may not be able to obtain optimal results
without selecting another parallelization construct, for example, the SGI's sproc interface or C language
programming extensions. To test this theory, we have implemented a parallel memory copy using SGI's C
language extensions. These extensions permit explicit memory placement, and using them we have witnessed
near-linear speedup. Unfortunately, in IRIX 6.5SE, pthreads and C language parallelization constructs
cannot be intermixed.

Improving speedup of the computational components of the rendering system would improve rendering
performance of the raw data, but would not improve the performance of the RLE datasets. These data
quickly become I/O bound while rendering performance continues to scale, albeit poorly. For portability
and ease of implementation, we elected to use indirect I/O, limiting read bandwidth to 90 MBytes per
second. A direct I/O implementation could conceivably ingest data at 300 MBytes per second on our Origin
con�guration, permitting higher frame rates, possibly suitable for VR purposes, or permiting the exploration
of even larger datasets.
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