
System Management for IRIX 6.5 June 10, 1998 1

System Management for IRIX 6.5
MPI, Array Services, Miser, NQE, Checkpoint/Restart

NQE Development Team
Strategic Software Organization

Silicon Graphics, Inc.

ABSTRACT: MPI, Array Services, Miser, NQE, and Checkpoint/Restart
are key components for IRIX system management. This
paper will describe these components and the interactions
among them.

Overview

The key to system management is schedule, execute, and control jobs so that they run in an effi-
cient manner. This is provided in IRIX 6.5 by the following components:

MPI execute multi-process and multi-node jobs.

Array Services manage multi-process and multi-node jobs. Array Services is an important
component in running and managing MPI jobs.

Miser schedule jobs in a manner that will deliver fast response time for interac-
tive jobs and fast turn-around time for batch jobs. Miser partitions memory
and CPU according to administrative groups of users, manages the active
workload, and minimizes cache hits and swapping.

NQE schedule, route, monitor and control the job backlog on a single node or a
cluster of nodes.

Checkpoint/Restart checkpoint and recover jobs during system shutdown or failure. The jobs
may be running on a single machine or on a cluster of machines managed
by Array Services.

This paper will describe these components and the interactions among them.

Array Services

Array Services provides management of multi-process and multi-node jobs, as well as execution
of commands across a cluster. Each job is given a global Array Services Handle (ASH) to treat
processes as a single entity across the cluster. Accounting data can summarize the resource usage
of an entire login session or batch job, significantly cutting down the amount of disk space
required to store the accounting data.

prairie% array uptime
desert: up 3 days, 6:43, 73 users, load average: 18:21, 16.57, 16.43
savanna: up 10 days, 2:03, 27 users, load average: 4.99, 4.03, 3.72

System Management for IRIX 6.5 June 10, 1998 2

prairie: up 1 day, 15:41, 18 users, load average: 5.20, 5.94, 7.76
forest: COMMAND FAILED

array services not available
prairie%

FIGURE 1. Array Services

Array Services is made up of four major components:

1. A number of client commands such as the array command illustrated above.

2. A user-state server, called arrayd, running as root on each node in the cluster.

3. Support in the IRIX kernel, in the form of array sessions.

4. A library, called libarray, which encapsulates the client/server and user/kernel interfaces.

All communication across the array occurs in the arrayd daemons. Most of the client commands
are simply wrappers for libarray: they parse the command line options, bundle them together into
a request, invoke a function from libarray, and then print the results. In a few cases the libarray
function will simply invoke a kernel function. More commonly, however, libarray will open a
connection to an arrayd server and send the request to it for processing. The server may either pro-
cess it by itself or forward the request to one or more servers in the cluster for processing. Once
the request has been handled, the results are sent back to the client process, where libarray trans-
forms them into a format suitable for the client. In addition, users are free to write client programs
of their own using libarray.

The client commands are:

array Runs a specified “array command” on each of the nodes in
the cluster. The array commands are configured by the sys-
tem administrator.

ainfo Obtains configuration and status information about clusters,
machines, servers, and array sessions.

arrayd

prairie

savannah desert

kernel

arrayd

kernel

arrayd

kernel

array uptime

libarray

System Management for IRIX 6.5 June 10, 1998 3

akill Sends a signal to all of the processes in an array session, or
to a process on a remote machine.

arshell Executes the specified command on the specified host in a
manner similar to the rsh command, propagating array ses-
sion information and resource limits.

aview Uses a Motif-based GUI to show the cluster and the jobs
running in it.

ascheck Verifies that all of the nodes in a cluster have compatible
Array Services configurations.

MPI (and Array Services)

The Message Passing Interface (MPI) is used for high performance on massively parallel
machines and on workstation clusters. The mpirun command specifies the number of processes to
run and the hosts to run them on.

MPI 3.0 uses Array Services to launch all MPI applications on all hosts, including the local host.
All processes in an MPI job share a global ASH and are controlled through Array Services. All
the processes of an MPI job may be signalled or killed, or suspended and resumed, as one.

The following command specifies that three processes of a.out run on the local host.

myhost% mpirun -np 3a.out

FIGURE 2. MPI processes on the local host

See Figure , “MPI and Array Services,” on page 6 for information on MPI with remote processes.

mpirun

libarray

libmpi

process

fork()

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

pipe

manager

System Management for IRIX 6.5 June 10, 1998 4

Miser

Miser is an application to schedule and reserve CPU and memory resources of a machine, balanc-
ing the needs of interactive users and batch jobs. Different queues can be configured to partition
the system among administrative groups.

Users specify a job’s resource requirements and Miser determines when the job can run or if it can
run in the requested timeframe. The following command requests that Miser schedule 64 cpus, 1
gigabyte of memory, and 12 hour of cpu time for the job a.out.

myhost% miser_submit -q marketing -o c=64,m=1g,t=12h a.out

Once Miser accepts the job, the job is guaranteed to have the requested resources at the scheduled
time. As a result, a job does not have to compete for resources and should complete faster with
more stable run-times. However, a Miser job may have to wait for its scheduled reservation
period.

Miser assigns the job a start time and places it on the batch queue. At the time of a job’s start time,
the job is considered batch-critical and has the highest non-realtime priority. However, if a CPU
becomes available before the start time, the job can run opportunistically.

Batch jobs not submitted through Miser and interactive jobs also run opportunistically, utilizing
CPUs that have not been reserved. See Figure 3, “Scheduler State Diagram,” on page 5. Memory,
however, is partitioned and only jobs submitted through Miser will be allowed to use the memory
resources configured for Miser.

System Management for IRIX 6.5 June 10, 1998 5

FIGURE 3. Scheduler State Diagram

NQE

The Network Queueing Environment (NQE) is a workload management product that schedules,
routes, monitors and controls the execution of jobs on a single host or a cluster of hosts. Users can
submit their jobs to the NQE cluster, specify the resources needed for the job, and not worry about
where the jobs will run. Based on the resources needed and the resources available, NQE will
select an appropriate server, route the job request to that server, schedule and initiate the job
request, and return STDOUT and STDERR files to the user.

Users may easily view system load, as well as submit, status, signal, and delete jobs using the nqe
GUI.

System administrators may checkpoint and restart batch jobs through NQE on IRIX 6.5.

Users specify the needed resources indirectly by submitting to a particular queue or directly with
options on the qsub or cqsub command. NQE will use the resource information to manage jobs by
workload class. If a job exceeds its resource allocation, it is killed.

The following process limits are enforced by the IRIX kernel.

• per process core file size

• per process data segment size

CPU Idle CPU Allocator
Looks for Work

Check Batch Scheduler
for critical work

No work found
with higher urgency
and current thread not
batch-critical

Check Time Share
Scheduler

No work found and
no current thread

Check Batch Scheduler
for batch work

Run new thread
or previously
running thread

No work
found

Scheduler
Tick

System Management for IRIX 6.5 June 10, 1998 6

• per process permanent file size

• per process stack segment size

• per process CPU time

• per process memory size

• per process working set size

The following job limits are enforced by NQE for IRIX. If a job exceeds these limits, there will be
an entry in job log when the job is killed.

• per request CPU time

• per request memory size

• Number of CPUs

Note that the limit on number of CPUs includes background processes running in parallel as well
as MPI jobs with parallel processing.

Checkpoint/Restart

IRIX Checkpoint and Restart (CPR) is a tool to capture an “image” or statefile of a running job
and to restart it from that point at a later time. The default behavior is to kill the job when check-
pointing it, but the job may also be allowed to continue running. A job may be running on the
local host or on another host managed by Array Services. CPR may be used to enhance system
availability, provide load and resource control or balancing, or to facilitate simulation or model-
ling.

The cview command provides an X Windows interface to CPR.

Checkpoint/Restart and MPI

CPR does not support checkpoint and restart of MPI jobs. The ability to checkpoint and restart
single-system MPI jobs is planned for the second quarter of calendar year 1998. The ability to
checkpoint and restart multi-system MPI jobs is planned for the third quarter of the calendar year
1998.

MPI and Array Services

MPI 3.0 uses Array Services to launch all MPI applications. MPI jobs with remote processes may
be suspended and then resumed (but not checkpointed and restarted) using the global ASH from
Array Services.

Communications for remote processes is accomplished with sockets. The following command
will initiate mpirun on prairie with the MPI child processes on savannah and desert.

System Management for IRIX 6.5 June 10, 1998 7

prairie% mpirun savannah,desert 3 a.out

FIGURE 4. MPI processes on remote hosts

NQE and Array Services

NQE assigns an ASH to each job. NQE batch jobs are visible in Array Services just as interactive
jobs are. Array Services commands may be used in NQE batch jobs in the same manner as they
are used interactively.

mpirun

libarray

libmpi

manager

socket

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

libarray

arrayd

manager

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

socket

fork()

socket

libarray

arrayd

fork()

socket

prairie

savannah

desert

System Management for IRIX 6.5 June 10, 1998 8

NQE and MPI

NQE only supports MPI jobs running on the local host. When NQE routes a job to a host, it
expects that that is where the job will run.

If an MPI job with remote processes is initiated under NQE, job limits will only apply to local
processes. However, deleting or signalling the job will delete or signal the remote processes. NQE
supports IRIX checkpoint/restart, and will use CPR support of MPI jobs as those features become
available.

To run an MPI job on the local host, use the -np option on the mpirun command:

mpirun -np 3 a.out

FIGURE 5. NQE and MPI on the local host

Note that NQE and MPI both create an Array Services ASH. The login shell for the batch job will
have a different ASH than the MPI job itself.

NQE and Miser

NQE manages workload by ordering jobs based on their resource requirements. Jobs are queued
until the resource usage of the jobs in a queue drops below a specified limit. For example, a site
might have three queues, one for large CPU jobs, one for medium-sized CPU jobs, and one for
small CPU jobs. Each queue has a limit of the number of jobs that may run simultaneously, allow-
ing the site to create a job mix of small, medium, and large jobs according to its requirements.

In contrast, Miser defines administrative partitions and reserves resources for the group of users
of a partition, designated by a Miser queue. Workload management is accomplished by reserving
the CPU and memory resources so that they are never oversubscribed. A job submitted to Miser
will receive a reservation of resources but may not actively run until sometime in the future.

mpirun

libarray

libmpi

process

fork()

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

pipe

manager
qsub ->
batch shell

ASH1 ASH2

System Management for IRIX 6.5 June 10, 1998 9

NQE 3.3 has a new job scheduling type called Miser Normal that will submit jobs to a Miser
queue. If Miser can’t guarantee that the job will start in a configurable timeframe, NQE will keep
the job in queued state and attempt to submit the job later. While the job is in queued state it may
be moved to a different queue.

Once Miser accepts the job, NQE shows the job in run state. Miser may not start the job immedi-
ately but, once accepted, the job is guaranteed to start within the NQE configured timeframe.

An NQE queue may only submit to one Miser queue, but any number of NQE queues may submit
to a single Miser queue. Thus, a set of NQE queues can be used to define different workload
classes for a Miser queue.

Miser and Array Services

Miser only supports jobs running on the local host. There is no interaction between Miser and
Array Services.

Miser and MPI (and Array Services)

Miser only supports single node MPI jobs. To run an MPI job on the local host under Miser, use
the command:

% miser_submit -q engr -o c=8,m=1g,t=12h mpirun -np 8 a.out

Miser places the forked mpirun process in a batch run-queue and will move it to batch-critical at
the scheduled time. When the process is scheduled, the process and all its children inherit the
Miser resources, contained in a resource set. Miser requires a parent-child relationship for pro-
cesses to share a resource reservation. See Figure 6, “Miser and MPI on a single node,” on
page 10.

System Management for IRIX 6.5 June 10, 1998 10

FIGURE 6. Miser and MPI on a single node

NQE, Miser, MPI and Array Services on a single host

MPI jobs may be submitted to NQE to use Miser scheduling, as long as all the MPI processes run
on the local host. All the processes of an MPI job may be signalled or killed, or suspended and
resumed, with a single NQE command for each action. See Figure 7, “NQE, Miser and MPI on a
single node,” on page 11.

NQE submits to a Miser queue and controls the job.

% cat mpijob
#!/bin/csh
miser_submit -q q1 -o c=5,m=1m,t=1h mpirun -np 3 a.out

% qsub -q miser_q1 mpijob

mpirun

libarray

libmpi
manager

sysmp()

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

MPI

miserd

kernellibmiser

miser_submit

fork()

fork()

Miser
Session

System Management for IRIX 6.5 June 10, 1998 11

FIGURE 7. NQE, Miser and MPI on a single node

NQE, Miser, MPI and Array Services on a cluster of hosts

MPI jobs using Miser under NQE will have the same problem as MPI jobs using Miser started
from an interactive process: there is no way to coordinate the resource reservation among hosts.
The parent-child relationship is lost between the local and the remote processes. Similarly, any
NQE limits checks will affect only processes on the local host. In addition, the batch job could be
using an NQE run slot on the local host while waiting for processes to initiate on the remote hosts.
See Figure 8, “NQE, Miser and MPI on a cluster of hosts,” on page 12.

Notice that in the following example, the Miser Session is only on the local host.

% cat mpijob
#!/bin/csh
miser_submit -q q1 -o c=5,m=1m,t=1h mpirun prairie,savannah,desert 3 a.out

% qsub -q miser_q1 mpijob

mpirun

libarray

libmpi

manager

sysmp()

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

MPI

miserd

kernellibmiser

miser_submit

fork()

fork()

Miser
Session

qsub ->
batch shell

System Management for IRIX 6.5 June 10, 1998 12

FIGURE 8. NQE, Miser and MPI on a cluster of hosts

mpirun

libarray

libmpi

manager

socket

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

libarray

arrayd

manager

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

socket

fork()

libarray

arrayd

fork()

socket

prairie

savannah

desert

sysmp()

miserd

kernellibmiser

miser_submitqsub ->
batch shell

fork()

manager

a.out

libmpi

a.out

libmpi

a.out

libmpi

fork()

MPI
fork()

socket

Miser Session

System Management for IRIX 6.5 June 10, 1998 13

Road Map

Silicon Graphics is committed to solving the problems of high performance and high availability
for distributed computing. The following time line shows the progression of completed and
planned features.

Released Features

4Q1996 Irix 6.4: 32PE support
NQE 3.1: initial Origin support
CPR 1.0: initial cpr release
array 3.0: 8x32 node

1Q1997 NQE 3.2: 64 bit limits, cpr support

2Q1997

3Q1997 Irix 6.4 update: 64PE support
NQE 3.2.2: softjob limits
cpr 1.1: pthreads

4Q1997 NQE 3.2.2: softjob limits

1Q1998 MPI 1.2: 64 PE support, LSF support
IAUD: interactive limits

2Q1998 NQE 3.3: miser integration
MPI 1.2.1: Miser, single system checkpoint
Array 3.1: single machine fork/exec, single machine miser

3Q1998 Irix 6.5: 128 PE support
FairShare II
Miser
CPR 1.2: fetchop, shmem
Array 3.2: source merge, UNICOS cmds

4Q1998 MPI 1.3: 48x128 support, cluster cpr phase 1
Array 3.3: 48

1Q1999 UDB/Kernel limits
Cray style accounting

