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ABSTRACT:  
This paper discusses the implementation of the new OpenMP standard for Fortran shared memory
parallel processing in Programming Environment Release 3.1 for Cray PVP systems. Similarities
and differences between OpenMP and Autotasking compiler directives, environment variables and
other control mechanisms are discussed. It becomes clear that OpenMP provides equivalents for
all of the essential features of current PVP Autotasking and Microtasking. The paper then
discusses where users should be careful when converting Autotasked or Microtasked PVP codes to
OpenMP and provides guidelines for the conversion. 
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What is OpenMP?

OpenMP is a new, standard application program interface (API) for Fortran shared memory parallel
programming. Its goal is to provide a model for parallel programming that is portable across different
shared memory architectures. The OpenMP Fortran API is documented at http://www.openmp.org. It
contains descriptions of compiler directives, environment variables and library routines. The library
routines and environment variables provide the functionality to control the run-time execution
environment. The compiler directive sentinels are structured so that they are treated as comments in
Fortran. Compilers that support the OpenMP Fortran API will provide a command line option that
activates and allows interpretation of all OpenMP compiler directives. Note that, the OpenMP Fortran
API specification describes only user-directed parallelization, that is, the user specifies the actions to be
taken by the compiler and run-time system in order to execute the program in parallel. 

OpenMP allows Fortran programmers to write compliant code which can be compiled and run on any
system which complies with the standard. OpenMP is an open standard, supported by many vendors
including SGI, IBM, and Intel. It is also supported by many Independent Software Vendors (ISVs) such
as ANSYS. 



Fortran 90 in Programming Environment Release 3.1 (3Q98) will support OpenMP. 

OpenMP is SGI’s direction for the future. While older PVP tasking, that is Microtasking, Macrotasking
and Autotasking, is still supported, users should begin to migrate codes to OpenMP, as future products
and platforms may not provide all of the old tasking directives. OpenMP provides equivalents for all of
the essential features of current PVP tasking. Performance of OpenMP should be equivalent to
performance of Autotasking, Microtasking or Macrotasking in most cases. 

In the following sections we review a few of Cray’s parallel programming paradigms available on PVPs
which are closely related to OpenMP, present the platforms on which OpenMP is supported, and discuss
how to convert tasked code to OpenMP. 

Parallel Programming Paradigms

Cray’s first parallel processing capability was Macrotasking. Users insert calls to library routines (such
as TSKSTART) which creates and manages tasks for coarse grain tasking. Macrotasking is still
supported, but we do not discuss it further here. 

The second capability was Microtasking, where !MIC$ compiler directives were used to control finer
grain tasking, generally at a loop level. 

The third capability was Autotasking, where compilers automate most or all of the analysis and
effectively Microtask a code. Users could control Autotasking by inserting Microtasking directives
when necessary. 

Now, OpenMP directives can be used to produce a standard multitasked code. OpenMP can also
supplement Autotasking. 

With the adoption of OpenMP, on future architectures Autotasking may be implemented on top of
OpenMP, rather than Microtasking. Across the company, common technology will be used for products
where it makes sense, perhaps using OpenMP mechanisms to implement Autotasking on future
architectures. OpenMP and Autotasking are allowed to intermix. We will discuss benefits and
restrictions of intermixing later. 

OpenMP Implementation

Currently, OpenMP is supported on the following platforms: 

All IRIX platforms 
J90, T90, C90, and SV1 (requires Unicos 10.0.0.3 and PE 3.1) 
Not on YMP (no Unicos 10.0) 
Not on MPP (T3E threads do not span CPUs) 

On an SV1 with Multi-streaming Processors (MSPs) OpenMP and Autotasking treat an MSP as a single
CPU. 



Converting Autotasked and Microtasked Codes to OpenMP

Converting code from one parallel programming paradigm to another can be a tedious and painful
experience. However, we do not expect this to be the case when converting existing Autotasked or
Microtasked code to OpenMP. In this case, the conversion can be done step-by-step in a
straight-forward manner as we will explain subsequently. This section discusses what may change when
an Autotasked or Microtasked code is converted to OpenMP. We address command line options,
environment variables, loop scheduling, critical regions, PVM and MPI, number of threads, conditional
compilation, library routines and compiler directives. For each of these topics we discuss what the user
should be aware of when converting code in order to ease the conversion process as much as possible.
See [1], [2] and [3] for more details on OpenMP and Autotasking compiler directives, environment
variables, other control mechanisms and PVP optimization. 

Fortran 90 Command Line

The F90 command line will generally not have to change. In addition to existing, unchanged command
line options, there are new command line options to turn off the OpenMP conditional compilation
sentinels (!$, c$, and *$) and to turn off OpenMP compiler directives (!$OMP). No new library options
are required as all OpenMP library routines are in Libc. 

The new command line options are: 

-x conditional_omp : Turn off OpenMP conditional compilation sentinels 

-x omp : Turn off OpenMP compiler directives 

The other (unchanged) command line options to control tasking are: 

-O task[n] : autotasking level 

-O [no]taskinner : control autotasking of inner loops 

-O [no]threshold : threshold for tasking 

-O 1 and -O 2 : directive tasking, no automatic tasking 

-O 3 : moderate automatic tasking 

-a taskcommon : blocks are thread private as well as taskcommon 

Environment Variables

OpenMP defines four environment variables to control parallelism. They are OMP_DYNAMIC,
OMP_NESTED, OMP_SCHEDULE and OMP_NUM_THREADS. Next, we discuss how each one of
them should be used. 

Autotasking environment variables, such as NCPUS and MP_DEDICATED, also control OpenMP
programs. The only interaction between OpenMP environment variables and Autotasking environment
variables is between OMP_NUM_THREADS and NCPUS, which have identical functionality, limiting



the number of CPUs participating in a parallel region. 

When converting tasked code to OpenMP, OMP_NUM_THREADS should be used instead of NCPUS.
If it is necessary to define both environment variables, they must have identical values. Currently
NCPUS overrides OMP_NUM_THREADS in the error case, ensuring that OpenMP will not
unintentionally affect existing programs. 

OMP_DYNAMIC specifies whether the number of CPUs can change during a parallel region. PVP
systems ignore the environment variable if it is set to FALSE; that is, dynamic adjustment of the number
of threads available in a parallel region cannot be disabled. 

OMP_NESTED controls "nested serial parallelism"; that is, whether a nested parallel region can create
new teams. PVP systems ignore the environment variable if it is set to TRUE; that is, nested parallelism
cannot be enabled. This is discussed in more detail later. 

OMP_SCHEDULE only applies to DO and PARALLEL DO directives that have the schedule tpye
RUNTIME. This environment variable can be set to any of the recognized schedule types and specifies
how loop iterations are divided among threads at run-time. If a schedule type other than RUNTIME is
specified for the above directives, this environment variable is ignored. PVP systems support GUIDED
and DYNAMIC (default) scheduling. If STATIC scheduling is specified, DYNAMIC scheduling is
performed. See subsection "Loop Scheduling" below for more details. 

Library Routines

OpenMP specifies a number of library functions. Only a few are new fuctionality. The remainder, such
as locks, are alternate entry points to functions provided for Autotasking. The new functions get and set
the new state variables. Examples are OMP_GET_NUM_THREADS() and
OMP_SET_NUM_THREADS(). 

PVP systems ignore OMP_DYNAMIC. The only way to be assured of processor availability is to have
the system dedicated. This is controlled by Autotasking’s MP_DEDICATED variable. See the
discussion on threads below. 

SGI systems ignore OMP_NESTED. Nested parallelism is not implemented. If SET_OMP_NESTED()
is called, a warning is issued. See the notes for the PARALLEL and MASTER directives if you want to
nest parallel regions. 

On PVP systems OMP_SET_NUM_THREADS issues a warning on attempts to exceed the allowed
number of tasks. See the following discussion on number of threads. 

PVM and MPI

The rules for intermixing OpenMP, PVM and MPI are the same as for intermixing Autotasking, PVM
and MPI. The network modes of PVM and MPI are compatible with OpenMP. The shared memory
mode has restrictions which are not described here. 

Number of Threads



PVP systems create a number of threads when tasking begins. This number cannot be exceeded for the
duration of the application. The number of threads is OMP_NUM_THREADS, which defaults to 4 or
the number of physical CPUS in the system, whichever is less. OMP_SET_NUM_THREADS issues a
warning on attempts to exceed the limit. 

NCPUS overrides OMP_NUM_THREADS. If both environment variables are set, they must be
identical. 

Loop Scheduling

On PVP systems when schedule type STATIC is specified, DYNAMIC is used instead, since STATIC
scheduling is not supported. The default schedule type is system dependent. If no schedule type is
specified, the schedule type for a loop is either DYNAMIC or GUIDED, depending on platform and
loop type. Vectorization influences the number of iterations given to each thread during scheduling. 

Critical Regions

OpenMP unnamed critical regions do not map onto unnumbered GUARDed regions, because of
potential for unintentional interference with old code. We may map certain named critical regions in a
future release if necessary. 

Conditional Compilation

OpenMP requires that when OpenMP directives are active, lines beginning with sentinels "C$", "!$",
and "*$" are conditionally compiled and the macro _OPENMP is defined. On PVP systems, OpenMP
directives are active with F90 defaults, so conditional compilation is active. 

Nontasking programs which have comment lines beginning with the sentinel must specify
command line option "-x conditional_omp" to disable conditional compilation. 

Directives

Autotasking, Microtasking, Macrotasking, and OpenMP directives can be intermixed, with few
exceptions. For example, the following is a valid program: 

REAL A(1000) 
SUM=0 

!MIC$ DO GLOBAL 
DO J=1,1000 

A(J) = J**4 

!$OMP ATOMIC 
SUM=SUM+A(J) 

END DO 
END 

The major restriction on intermixing is that in directive pairs, such as PARALLEL and
ENDPARALLEL, both directives must either be OpenMP or Microtasking. 



Intermixing is necessary, since large codes should be converted step-by-step. Intermixing also allows
frequent testing as conversion progresses. Also, intermixing allows users who depend on third party
libraries that use old directives and/or do not have OpenMP versions, to use OpenMP for at least part of
their codes. In the future however, Microtasking directives may not be carried to new products or
platforms. 

Mapping OpenMP directives onto Autotasking directives

In order to facilitate the conversion of Autotasked code to OpenMP code we describe the mapping of all
OpenMP compiler directives onto corresponding Autotasking directives. We also note any capability
changes. This mapping allows users to easily determine which OpenMP directives to use when
converting Autotasked code to OpenMP. Programs that use these OpenMP directives are portable and
can be compiled by any compiler that supports the OpenMP standard. 

Parallel region constructs

OpenMP directives !$OMP PARALLEL and !$OMP END PARALLEL mark, respectively, the
beginning and end of a parallel region, where a parallel region is a block of code that is to be executed
by multiple threads in parallel. 
Similarly, Autotasking directives !MIC$ PARALLEL and !MIC$ END PARALLEL define a parallel
region. 
New capabilities: COPYIN is a new clause. A COPYIN clause on a parallel region specifies that the
data of the master thread of the team can be copied to the thread private copies of the common block at
the beginning of the parallel region. COPYIN can also be used on many of the other OpenMP directives.

Autotasking capabilities not in OpenMP: None. 

Work-sharing constructs

A work-sharing construct divides the execution of an enclosed code region among the members of the
team of threads that encounter the construct. A work-sharing construct must be enclosed within a
parallel region in order for the directive to execute in parallel. 

OpenMP directive !$OMP DO specifies that the iterations of the immediately following DO loop must
be divided among the threads in the parallel region. If there is no enclosing parallel region, the DO loop
is executed serially. 
Similarly, Autotasking directive !MIC$ DOPARALLEL specifies that the immediately following DO
loop may be executed in parallel by multiple processors. 
New capabilities: Work-sharing parameters STATIC and RUNTIME are new. The NOWAIT clause is
new.
Autotasking capabilities not in OpenMP: None. 
Note that, the Autotasking directives have to be called from within a parallel region whereas the
OpenMP directives don’t. 

OpenMP directives !$OMP SECTIONS and !$OMP END SECTIONS specify that the enclosed sections
of code are to be divided among threads in the team. Each section is executed once by a thread in the
team. Threads that complete execution of their section wait at a barrier at the END SECTIONS directive



unless a NOWAIT is specified. 
Similarly, Autotasking directives !MIC$ CASE and !MIC$ ENDCASE mark adjacent code blocks that
can be executed concurrently, each one by a single processor. 
New capabilities: The NOWAIT clause is new.
Autotasking capabilities not in OpenMP: None. 

OpenMP directives !$OMP SINGLE and !$OMP END SINGLE specify that the enclosed code is to be
executed by only one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLE directive unless NOWAIT is specified. 
Similarly, Autotasking directives !MIC$ CASE and !MIC$ ENDCASE can enclose one code block
only. They mark the beginning and end of a control structure and signal that the enclosed code will be
executed on a single processor. All work within the control structure must complete before execution
continues with the code below the ENDCASE. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 

Combined parallel work-sharing constructs

Combined parallel work-sharing constructs are short cuts for specifying a parallel region that contains
only one work-sharing construct. The semantics of these directives are identical to the semantics of
explicitly specifying a PARALLEL directive followed by a single work-sharing construct. 

OpenMP directive !$OMP PARALLEL DO provides a shortcut form for specifying a parallel region
that contains a single DO directive. 
Similarly, Autotasking directive !MIC$ DOALL indicates that the DO loop beginning on the next line
may be executed in parallel by multiple processors. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 

OpenMP directives !$OMP PARALLEL SECTIONS and !$OMP END PARALLEL SECTIONS
provide a shortcut form for specifying a parallel region that contains a single SECTIONS directive. The
semantics are identical to explicitly specifying a PARALLEL directive immediately followed by a
SECTIONS directive. 
Similarly, Autotasking directives !MIC$ PARALLEL/ !MIC$ CASE and !MIC$ ENDCASE/ !MIC$
ENDPARALLEL have the same semantics. 
New capabilities: This directive pairs provides a significant shortcut. 
Autotasking capabilities not in OpenMP: None. 

Synchronization constructs

OpenMP directives !OMP$ MASTER and !OMP$ END MASTER mark, respectively, the beginning
and end of a master section, which is a structured block of code to be executed by the master thread of
the team. 
No corresponding Autotasking directives exists. 
New capabilities: this is a new directive. 
Autotasking capabilities not in OpenMP: Not Applicable. 
Note, using the directives pair !OMP$ MASTER and !OMP$ END MASTER is equivalent to the
following IF statement. 



IF (this thread is the master of a team) THEN 
... 
ENDIF 

All threads other than the master thread in a team skip the enclosed section of code and continue
execution. The !OMP$ END MASTER directive does not end a parallel region and there is no implied
barrier on entry to or exit from the master section. 
In a nested serial parallel region all tasks become master of a team of one. Thus, every task executes the
master section. The tasks may execute concurrently which may make it necessary to have critical
regions and atomic updates (synchronization) inside master sections. 

OpenMP directives !OMP$ CRITICAL and !OMP$ END CRITICAL mark, respectively, the beginning
and end of a piece of code which can be accessed by only one thread at a time. 
Similarly, Autotasking directives !MIC$ GUARD and !MIC$ ENDGUARD mark the beginning and end
of a critical region, which is a piece of code to be executed be only one processor at a time. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 
Note that, unnamed guarded regions are implemented using semaphores whereas critical regions are
implemented using memory locks. In dedicated mode on a dedicated system an unnamed guarded region
will perform better than a critical region. No performance predictions can be made for a loaded system
since which of the two regions will perform better depends on the load of the system. Also note that,
critical regions will not map onto any guards and thus guards will not interfere with critical regions. 

OpenMP directive !OMP$ BARRIER synchronizes all the threads in a team. 
Similarly, a single pair of Autotasking directives !MIC$ CASE and !MIC$ ENDCASE with no enclosed
code can be used to synchronize all processors. 
New capabilities: This is a new and short synchronization mechanism. 
Autotasking capabilities not in OpenMP: None. 
Note that, in Autotasked codes the library routine barsync() synchronizes all processors as well. 

OpenMP directive !OMP$ ATOMIC ensures that a specific memory location is to be updated
atomically, rather than exposing it to the possibility of multiple, simultaneous writing threads. This
directive only applies to the immediately following statement. 
Similarly, Autotasking directives !MIC$ GUARD and !MIC$ ENDGUARD with only a single line of
code enclosed can achieve atomic memory updates. 
New capabilities: This is a new and short mechanism for allowing atomic memory operations. 
Autotasking capabilities not in OpenMP: None. 

OpenMP directive !OMP$ FLUSH identifies synchronization points at which thread-visible variables
are written back to memory. 
Autotasking directive !MIC$ SUPPRESS achieves the same. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 
Note that, neither directive invalidates the cache. 

OpenMP directives !OMP$ ORDERED and !OMP$ END ORDERED mark the beginning and end of a
piece of code which is executed in the order in which it would be executed in a sequential execution of
the loop. 



Similarly, Autotasking directives !MIC$ WAIT and !MIC$ SEND mark the beginning and end of a
piece of code that must be executed sequentially. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 

Data environment constructs

OpenMP directive !OMP$ THREADPRIVATE makes named common blocks private to a thread but
global within the thread. 
Similarly, Autotasking directive !DIR$ TASKCOMMON achieves the same. 
New capabilities: None. 
Autotasking capabilities not in OpenMP: None. 
Note that, for slave threads, THREADPRIVATE common blocks are not guaranteed to persist beyond
parallel regions because dynamic thread management cannot be disabled (see "Environment Variables").
Nevertheless, THREADPRIVATE is expected to work the same way as TASKCOMMON in
Autotasking. 

Conclusions

OpenMP is the direction of the future of multitasking at SGI. With F90 Programming Environment
release 3.1, users should begin converting codes which contain tasking directives to OpenMP where
equivalent functions exist, as future platforms and products may not support all of the obsolete
Microtasking directives. 

Conversion to OpenMP should not be difficult, but it should be done gradually, with frequent testing.
The mapping of OpenMP and older tasking directives described in this paper should be useful in guiding
the conversion and identifying any problems that may occur. 

Finally, in most cases the performance of Autotasking and OpenMP should be equivalent. 
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