
Synchronization on Cray-T3E Virtual Shared Memory�

Miltos D. Grammatikakis, Helidon Dollaniy, Stefan Lieschez

Institute for Informatics,

University of Hildesheim

31141 Hildesheim, Germany

fmdgramma,dollani,liescheg@informatik.uni-hildesheim.de

Abstract

We consider algorithms for implementing mutual exclusion on the Cray-T3E virtual shared
memory using various atomic operations. Our implementations of Anderson's and MCS Lock
minimize network contention and dramatically improve performance for any system with more
than two processors. Improvements over the Cray shmem lock library functions are above three
orders of magnitude on a 64-processor T3E-900. Our results hold for either small or large critical
sections, and make the possibility of implementing concurrent data structures on the Cray-T3E
virtual shared memory a viable one.

1 Introduction

In low-level (virtual) shared memory programming, processors can access local and remote memory
using read, write, and atomic operations. Synchronization is needed to avoid data consistency prob-
lems, called race conditions [14]. Data races arise when threads or parallel processes access shared
variables and

� at least one access is a write operation, while

� there is no synchronization as to the order of accesses to the variable.

Synchronization routines are classi�ed into either blocking or busy-wait. While with blocking wait-
ing processes are deferred, thereby freeing the CPU to perform other operations, with busy-wait
processes repeatedly access shared variables to determine when they may proceed. Busy-wait synchro-
nization is a better approach when scheduling overhead exceeds busy-wait time, when CPU resources
are not needed by other threads, or when rescheduling is inappropriate, as in a single-user system.

Busy-wait synchronization includes acquire lock and release lock mechanisms for mutual exclu-
sion, post and wait semaphores for producer-consumer problems, and non-fuzzy barriers for bulk-
synchronous computations [11]. Although hardware barriers are common in NUMA supercomputers,
such as the TMC/CM-5 and Cray-T3D/T3E, Fujitsu and Hitachi MPP systems, locks and special
semaphores (condition variables) are generally implemented using shared memory library calls. In
general, a lock is more restrictive than a semaphore. Not only it is a binary object, but also a re-
lease lock operation can only be performed by the last processor to acquire the lock. Performance
of synchronization routines bene�ts from the availability of hardware supported atomic operations,
such as Test&Set, Fetch&Increment, Fetch&Add, Fetch&Store, Compare&Swap, and Load Linked &
Store Conditional [13].

Two of the most important and widely used busy-wait synchronization mechanisms are spin locks,
and (non-fuzzy) barriers. Spin locks provide means for implementing mutual exclusion and avoiding
data races. They ensure that only one processor may access (and possibly modify) a shared data
structure at any given time. Spin locks protect application critical sections, and may be executed an
enormous number of times with concurrent data structures, such as priority queues, FIFO queues,
e.g. in OS kernel processing routines, or fault tolerance recovery techniques. Apart from concurrent
implementations of linked lists and sometimes queues which can be done in a lock-free fashion, locks

�We acknowledge partial support from KFA, J�ulich - project K2710000.
yVisiting from the Department of Mathematics, University of Tirana, Tirana, Albania. Supported by a DAAD

short-term research scholarship (A/97/12720).
zResearch partially supported by EPCC/TRACS through an HCM scholarship.

1

are generally needed in most asynchronous implementations of shared memory algorithms, e.g. a
concurrent implementation of a Gaussian solver of AX = B. Barriers provide mechanisms for ensuring
that no process advances beyond a particular point in computation until all processes have arrived
at that point. Barriers are also used for avoiding race conditions, and may be a major contributor to
run time.

A concurrent algorithm is said to be lock free if it always guarantees that some process will complete
in a �nite number of steps. It is wait free if it guarantees that each process will complete in a �nite
number of steps. A hierarchy of atomic principles enabling the simulation of lower class primitives in
a wait free manner has been developed [7]. The hierarchy leads to interesting emulations of atomic
operations and higher level synchronization principles.

In this paper we examine several implementations of locks on Cray-T3E virtual shared memory
systems. In Section 2, we discuss the implementation of spin locks, including Test&Set-based lock,
Ticket Lock, Anderson's Lock, and Mellor-Crummey and Scott (MCS) Lock for virtual shared memory.
In Section 3 we evaluate spin locks, by computing the average time for acquire and release lock
operations. We concentrate on both small, and large critical sections. We show that Anderson's and
MCS Lock minimize network contention, and o�er improved performance over all other locks for any
system with more than two processors. In fact, MCS Lock is 1000 to 10,000 times faster than the
Cray-T3E shmem test lock & shmem set lock instructions for 64 processors.

2 Virtual Shared Memory on Cray-T3E

Nowadays most non-uniform memory access (NUMA) supercomputers, including Cray-T3E, NEC
SX-4, and to a lesser degree Hitachi SR-2201 and Fujitsu VPP700, support virtual shared memory.

The Cray-T3E implements a logically shared address space over physically distributed memories
(with up to 2GB per processor). Each processing element (PE) consists of a DEC Alpha 21164
processor connected to a "shell", consisting of a control chip, a router chip and local memory. The
T3E improves the memory bandwidth of the Alpha microprocessor by providing a large set (512 user
plus 128 system) of external registers (called E-registers). These registers are used to support remote
communications and synchronization. Because of the large number of E-registers, remote reads and
writes are highly pipelined. The operations that read memory into E-registers and write E-registers to
memory are called respectively, shmem get and shmem put. On the Cray-T3E both operations have
similar performance. However, due to adaptive packet routing, successive calls to shmem put are not
guaranteed to arrive in order. Special calls to shmem quiet/shmem fence are needed to verify that all
previous puts from/to a particular PE have executed in order.

On the Alpha �P a Load Linked & Store Conditional implements an atomic read-modify-write
cycle; this is the only atomic operation available consistent with its RISC philosophy [3]. The
Load Linked(a) primitive returns the value M(a) and sets a reservation associated with the location
and the processor (but does not lock the location). A subsequent Store Conditional(a; b) instruction
checks the reservation, and either succeeds writing the value of b, if the value at that location has not
been modi�ed, or otherwise it fails.

The Cray-T3E provides a plethora of atomic operations on arbitrary memory locations, allowing
an unlimited number of synchronization variables. The atomic operations provided by the Cray-
T3E are Fetch&Inc, Fetch&Add, Compare&Swap and (masked) Swap. Notice that Fetch&Store,
Compare&Swap, or Load Linked & Store Conditional can be used to implement Test&Set, hence
Test&Set is not provided in most modern MPP systems, like the Cray-T3E.

Atomic operations on the the Cray-T3E are implemented using the Alpha �P Load Linked &
Store Conditional primitive. The main idea of these implementations is to repeatedly execute Load Linked
& Store Conditional cycles, until the Store Conditional is successful, thus the operation appears to
be atomic since there is no overlapping with other operations accessing the same memory location1.

Barriers allow a set of participating processors to determine when all processors have signaled some
event (typically reached a certain point in their execution of a program). Barriers are implemented
in hardware on the Cray-T3E using combining trees.

Cache coherence is implemented on the Cray-T3E using cache-invalidate protocols. However, the
T3E is not stream coherent and prefetching must be turned o� to avoid data race conditions which
may cause inconsistent results, program aborts, or hangs. It is also known that the T3E may reorder
instructions from a given PE, e.g. local remote writes and remote read operations (WR reorder). A
released consistency model has been proposed based on the Alpha microprocessor [3].

1In practice Load Linked & Store Conditional checks a complete cache line.

2

2.1 Cray ShMem - Remote and Atomic Operations

Atomic operations are supported on all Cray MPP and PVP systems by calling Cray ShMem li-
brary functions. ShMem library calls can be used within Fortran and C/C++ programs. Since our
implementations are in C only C/C++ routines are presented.

Generic Name ShMem Function Description

Fetch&Inc shmem short finc(&a,n) return Mn(a); < Mn(a) = Mn(a) + 1 >
Fetch&Add shmem short fadd(&a,b,n) return Mn(a); < Mn(a) = Mn(a) + b >

Fetch&Store shmem swap(&a,-1,b,n) return Mn(a); < Mn(a) = b >

Compare&Swap shmem short cswap(&a,b,c,n) if Mn(a) 6= b : return Mn(a)
else : return Mn(a); < Mn(a) = c >

(Masked) Swap shmem short mswap(&a,b,c,n) return Mn(a); < M i
n(a) = ci >,

8i 2 f0; : : : ; 31g : bi = 1

Remote Read PEp : shmem get(&a,&b,c,n) < Mp(a) = Mn(a); : : : ;
Mp(a+ c� 1) = Mn(b+ c� 1) >

Remote Write PEp : shmem put(&a,&b,c,n) < Mn(a) = Mp(b); : : : ;
Mn(a+ c� 1) = Mp(b+ c� 1) >

Table 1: Atomic read-modify-write and remote read/write in ShMem

Atomic operations available to users and operating system programmers on the Cray-T3E are
shown in Table 1. The operands are generally short (32-bit) integers; some operations allow also for
other data types, such as int, long,
oat, and double. A de�nition of each operation listed in Table 1
is provided below:

Fetch �(a; b) operations return the memory contents M(a), while storing at location a the function
�(M(a); b).

Compare&Swap(a; b; c) primitives atomically compare the content of memory location M(a) with
a replacement value b, and store a third value c if they match; the operation also returns a condition

ag indicating either success, or failure.

(masked) Swap(a; b; c) operations store selected bits from c in M(a). Selection is done by the mask
b. It returns the previous content of M(a).

acquire lock/release lock(a) routines together provide mutual exclusion. The �rst call to ac-
quire lock(a) returns immediately. A successive call returns after a release lock(a) corresponding to
the �rst acquire lock(a) is executed. This ensures that only one process is holding the lock at a time.

Also notice, that due to adaptive routing of messages, successive calls to shmem put are not guar-
anteed to arrive in order. Special calls to shmem quiet (shmem fence) are needed to verify that all
previous puts from (to) a particular PE have executed in order.

3 Mutual Exclusion on Virtual Shared Memory

In this Section, we describe �ve implementations of a mutual exclusion spin lock. In our busy-
wait lock implementations, processors call acquire lock whenever they desire a lock (there are no
synchronization barriers involved). Acquire lock will return only when the lock is obtained by the
calling processor. A subsequent call to release lock will make the lock available to other competing
processors.

Each algorithm assumes a virtual shared memory environment that allows for atomic, remote
write, and remote read operations. In our presentation, we will use the macro names: fast finc,
fadd, cswap, and swap referring to atomic operations as shown in Table 1. Furthermore, most of our
lock variables will be of type short; this entails no severe limitation of the use of our routines and
faster remote operations are possible.

3.1 Test&Set Lock

The simplest mutual exclusion lock employs a polling loop to access a boolean
ag that indicates
whether the lock is held. As the C code in Table 2 indicates, in acquire lock each processor repeatedly

3

short L = 0, set value = 1;

void acquire lock(short *L) void release lock (short *L, int PE)

f f

#de�ne Const Delay 3 if (PE == 0)

int delay = 1, hang on, i; *L = 0;

do f else f

hang on = delay * Const Delay; *L = 0;

for (i=0; i < hang on; i++) ; shmem short p(L,*L,0);

delay = delay * 2; g

g while (swap (L, set value, 0) == 1); g

g

main: acquire lock (&L);

release lock (&L, shmem my pe());

Table 2: Test&Set Lock with exponential backo�

executes a Test&Set operation (via a swap) in its attempt to change the
ag from false to true. The
processor will then release the lock by setting the
ag back to false. The main shortcoming of the
Test&Set Lock is network contention for the
ag, which is allocated at a given PE (usually PE0).

The total amount of network tra�c caused by busy-waiting on a Test&Set Lock can be reduced by
introducing a random delay at each processor between consecutive probes of the lock. The simplest
method employs a constant delay; more e�cient schemes adopt exponential backo� on unsuccessful
probes [1]. This is also shown in Table 2.

3.2 Ticket Lock

short Slot = 0, Serve = 0;

void acquire lock(short *Slot, void release lock(short *Serve, int PE, int NoPEs)

short *Serve, int PE, int NoPEs) f

f short temp;

short Ticket, wait cycles,

mask = MaxShort, temp; if (PE != 0) f

temp = shmem short g(Serve,0);

temp = fast �nc(Slot, 0); temp = (temp + 1) % NoPEs;

Ticket = temp % NoPEs; shmem short p(Serve,temp,0);

if (temp == mask) g

temp = fadd(Slot, -mask, 0); else

*Serve = (*Serve + 1) % NoPEs;

do f g

if (PE != 0)

wait cycles = shmem short g(Serve,0);

else

wait cycles = *Serve;

g while (wait cycles != Ticket);

g

main: acquire lock (&Slot, &Serve, shmem my pe (), shmem n pe ());

release lock (&Serve, shmem my pe (), shmem n pe ());

Table 3: Ticket Lock with no backo�

In Test&Set Lock, the number of read-modify-write operations is potentially large, and each
Test&Set operation would cause invalidation of all cache copies on a cache coherent system. Al-
though every waiting processor may perform a Test&Set operation on the same
ag each time, only
one will actually acquire the lock. We can reduce remote cache invalidations (and possibly network
tra�c) using a Ticket Lock, while at the same time we ensure FIFO service; i.e. granting the lock to

4

processors in the order that they request for it.
A Ticket Lock consists of two counters. The request counter Ticket counts the processors that

call acquire lock, while the release counter Serve counts the times the lock has been released. A
processor acquires the lock by performing

� A Fetch&Increment on Slot, a variable allocated only at PE0. Over
ow of Fetch&Increment is
prevented by performing a subsequent fadd to Slot

� Spinning until its request counter equals the value of the release counter.

It releases the lock by

� incrementing the release counter.

Our implementation of Ticket Lock on the Cray-T3E is shown in Table 3.
Ticket Lock causes substantial memory and network contention by polling a common location. As

with Test&Set Lock, this contention can be reduced by introducing delay on each processor between
consecutive probes of the lock. In this case however, exponential backo� is not a good idea. Instead
proportional backo� is implemented, and the delay is made proportional to the di�erence between the
values of the request and release counter. The constant of proportionality is the minimum time that
a processor can hold the lock [11].

3.3 Anderson's Lock

short my
ag = -2, Lock = -1, Slot = 0, Ticket;

void acquire lock(short *my
ag, short *Lock, void release lock(short *my
ag, short *Lock,

short *Ticket, short *Slot, int PE, int NoPEs) short *Ticket, short *Slot, int PE, int NoPEs)

f f

short mask =MaxShort, temp, value inv = -2; short y, index proc, value set = -1;

temp = fast �nc(Slot, 0); index proc = (*Ticket+1) % NoPEs;

*Ticket = temp % NoPEs; y = swap (Lock, value set, index proc);

if (temp == mask)

temp = fadd(Slot, -mask, 0); if ((PE != y) && (y>=0))

shmem short p(my
ag, value set, y);

*my
ag = swap (Lock, PE, *Ticket); else if ((PE == y) && (y>=0))

do f g while (*my
ag != -1); *my
ag = value set;

if (PE != *Ticket) g

shmem short p(Lock,value inv,*Ticket);

else

*Lock = value inv;

g

main: if (PE == 0) my
ag = -1; /* allow �rst request to acquire lock */

acquire lock(&my
ag, &Lock, &Ticket, &Slot, shmem my pe (), shmem n pe ());

release lock(&my
ag, &Lock, &Ticket, &Slot, shmem my pe (), shmem n pe ());

Table 4: Anderson's Lock

Even for Ticket Lock with proportional backo�, it is not possible to obtain an average constant
number of network transactions per lock acquisition, due to the unpredictability of the length of
critical sections. Anderson has proposed a locking algorithm that achieves constant network tra�c
on cache coherent shared memory multiprocessors that support Fetch&Increment (or Fetch&Store)
operations [1]. Expanding on Anderson's idea to virtual shared memory systems, the trick is that each
processor uses an atomic swap to save its address at the PE named Ticket. Then processors performing
release lock can directly inform the next processor to acquire the lock, by writing directly on its
spinning variable my flag. This idea is implemented on the Cray-T3E as shown in Table 4. Notice
that, each processor spins on its local variable which can be arranged to be on a di�erent cache line.
The Fetch&Increment in Anderson's algorithm could also be avoided by using a single Fetch&Store
operation (on the corresponding sub�elds) [6].

5

3.4 MCS Lock

short my
ag, Lock = -1, next;

void acquire lock(short *my
ag, short *Lock, void release lock(short *my
ag, short *Lock,

short *next, int PE) short *next, int PE)

f f

short value set = 1, value null = -1, predecessor; short value reset = 0, value null = -1;

*next = value null; if (*next < 0) f

predecessor = swap (Lock, PE, 0); if (cswap(Lock, PE, value null, 0) == PE)

if (predecessor >= 0) f return;

*my
ag = value set; do f g while (*next < 0);

if (PE != predecessor) g

shmem short p(next, PE, predecessor);

else if (PE != *next)

*next = PE; shmem short p(my
ag, value reset, *next);

do f g while (*my
ag == value set); else

g *my
ag = value reset;

*my
ag = value set; g

g

main: acquire lock(&my
ag, &Lock, &next, shmem my pe ());

release lock(&my
ag, &Lock, &next, shmem my pe ());

Table 5: MCS Lock

The MCS Lock, as prototyped by Mellor-Crummey and Scott, guarantees FIFO ordering of lock
acquisitions, spins on local variables only, requires a small constant amount of space per lock, and
works equally well on machines with and without coherent caches. We have adjusted the MCS Lock
to the virtual shared memory model. The resulting code for the Cray-T3E appears in Table 5.

A Lock variable is allocated at processor 0. Its contents are either null (-1) if the lock is still
available, or otherwise set equal to PE, if processor PE has acquired the lock. Each processor using
the lock must allocate two queue pointers (predecessor and next) and a boolean
ag (my flag). The
predecessor variable points to the previous processor requesting an acquire lock, or is null if no
PE has done so. The predecessor variable is used to notify the predecessor PE by setting its local
variable next; this variable is initialized to -1 in acquire lock. A processor issuing an acquire lock

either obtains the Lock, or spins on its local my flag, until the Lock becomes free.
On a release lock operation the queue pointer next is checked. If next is non-empty we pass

the Lock to the next PE by setting the corresponding my flag variable. If next is empty, a Com-
pare&Swap enables the processor to determine whether it is the only processor in the queue. In this
case, the processor simply resets Lock to -1, in a single atomic action. Otherwise, there is another
processor waiting for the Lock, so we wait until this other processor sets the next pointer of this
PE, so that we can inform him. This local spin in release lock compensates for the time window
between the Fetch&Store (swap) on Lock and the later assignment to next in acquire lock.

Chains of processors holding and waiting for the lock are shown in Figure 1. In

(a) the lock is free, in

(b) PE4 has just acquired the lock, so its my flag equals 0, while in

(c) PE4 is in its critical section, so its my flag equals 1.

Upon releasing the lock PE4 will notify the next processor (PE2) using a remote write on its my flag

variable. Notice the corresponding next and predecessor queue pointers.

4 Performance of Lock Implementations on Cray-T3E

We now evaluate the average time each processor spends on acquire lock and release lock opera-
tions. The time spent in the two routines on the Cray-T3E900 is added together. In Figure 2 we show

6

���
���
���

���
���
���

(b)

(a)

my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE my_flag predec next PE

Lock

Lock

Lockmy_flag predec next PE

(c)

 4 1 2

4

 0

 1

Figure 1: Example with MCS acquire lock and release lock operations

1e-06

1e-05

0.0001

0.001

0.01

10 20 30 40 50 60 70

A
v
e
r
a
g
e

T
i
m
e

(
s
e
c
)

Number of Processors

Ticket Lock
Cray Lock

Test&Set, exp. backoff
Test&Set Lock

Ticket Lock, lin. backoff
Anderson Lock

MCS Lock

Figure 2: Mutual exclusion on Cray-T3E for small critical section

the performance for a small synthetic critical section. For any number of processors P > 2, Anderson
and MCS lock are far superior to any choice of Test&Set or Ticket Lock. If only one or two processors
are requesting a lock, and FIFO ordering of lock requests is not important, then a simple Test&Set
is the best choice. This is also true when lock is an extremely rare operation; however, in this situ-
ation, one can argue that a lock may be dropped without introducing race conditions. Furthermore,
the performance of Test&Set with exponential backo� is only slightly better than Test&Set with no
backo�. For Ticket Lock we have found proportional backo� to be generally a bad idea, especially for
large critical sections.

The Cray lock, probably implemented as a Ticket Lock, since it guarantees FIFO ordering (and
analysis of the assembly code indicates that PEs access a variable at a �xed PE), is extremely slow.

7

1e-06

1e-05

0.0001

0.001

0.01

10 20 30 40 50 60 70

A
v
e
r
a
g
e

T
i
m
e

(
s
e
c
)

Number of Processors

Cray Lock
Ticket Lock

Ticket Lock, lin. backoff
Test&Set Lock

Test&Set, exp. backoff
Anderson Lock

MCS Lock

Figure 3: Mutual exclusion algorithms on Cray-T3E for large critical section

It is, including runtime lock validation, between 1000 to 10,000 times slower than MCS Lock for 64
processors! This would be several orders of magnitude slower on a full-scale Cray-T3E system.

Similar results for large critical sections, shown in Figure 3, verify the above observations. In
this case, the critical section consists of a loop with �1 million integer operations; large critical
section, refers to the average time spent in the loop compared with the minimum time taken by an
acquire lock together with a release lock operation.

5 Conclusions

The performance of locks is of a great importance to several problems which lie in the heart of con-
current data structures, operating systems, and fault tolerance. Our implementations of Anderson's
Lock and MCS Lock minimize internetwork and memory tra�c and achieve performance at levels of
several orders of magnitude better than Test&Set Lock, Ticket Lock, or Cray-T3E library shmem lock
implementations.

In several applications, alike Ticket Lock and Anderson's Lock, there is access to centralized
counter. Implementing this counter as a counting network can reduce bottlenecks. Counting networks
provide a distributed mechanism for implementing Fetch&Increment, by avoiding the tra�c associated
with accessing a single (virtual) shared memory location [2]. Implementation of fan-in two, O(log2N)-
depth counting networks, isomorphic to Batcher's bitonic sorting network [4], or the balanced periodic
sorting network [5], shows the practicality of this low-level approach [8].

Implementations of other synchronization issues, such as software barriers on the Cray T3E are
interesting. For non-fuzzy barriers, we do not expect improvements, since Cray-T3E hardware barriers
have almost constant runtime (� 2usec), independent of the number of PEs (N). This is always faster
than a software barrier, whose runtime depends on the number of PEs participating in the barrier

8

[11], usually as log2N . However, fuzzy nonblocking barriers are interesting and their implementation
could be useful for optimizing certain latency-bound applications.

We currently consider the e�ect of our lock implementations on parallel network simulation al-
gorithms by implementing concurrent priority queues using atomic operations [12, 9]. These data
structures support priority insert and delete min operations which are necessary for modeling network
packet movements. Since, �20-30% of our parallel code consists of calls to lock operations, we claim
that our analysis (which will be included in the �nal version of this paper) will make our results
even stronger [10]. We hope that improved lock/semaphore implementations in NUMA supercomput-
ers would encourage programmers to consider concurrent, shared memory data abstraction for high
performance applications.

6 Acknowledgments

We are greatful to Prof. Michael Scott for his helpful explanations and pointers.

References

[1] Anderson, T. E. The performance of spin lock alternatives for shared memory multiprocessors.
IEEE Trans. Parallel Distrib. Syst. C-1 (1), 1990, pp. 6{16.

[2] Aspnes, J., Herlihy, M. and Shavit, N. Counting networks. J. ACM. 41 (5), 1994, pp. 1020{1048.

[3] Attiya, H., and Friedman, R. Programming DEC-Alpha based multiprocessors the easy way. In
Proc. 6th ACM Symp. Parallel Alg. Arch., 1990 , pp. 157{166.

[4] Batcher, K. E. Sorting networks and their applications. Proc. AFIPS Spring Joint Comput.
Conf. 32, 1968, pp. 307{314.

[5] Dowd, M., Perl, Y., Rudolph, L. and Saks, M. The periodic balanced sorting network. J. ACM.
36 (4), 1989, pp. 738{757.

[6] Graunke, G., and Thakkar, S. Synchronization algorithms for shared memory multiprocessors.
IEEE Computer C-23 (6), 1990, pp. 60{69.

[7] Herlihy, M. Wait-free synchronization. ACM Trans. Progr. Lang. Syst. C-13 (1), 1991, pp.
124{149.

[8] Herlihy, M., Lim, B. H. and Shavit, N. Scalable concurrent counting. ACM Trans. Comput.
Syst. C-13 (4), 1995, pp. 343{364.

[9] Hunt, G.C., Michael, M., Parthasarathy, S., and Scott, M.L. An e�cient algorithm for concur-
rent priority queue heaps. Inf. Proc. Letters, 60 (3), 1996, pp. 151{157.

[10] Liesche, S. MPI and shared memory implementations of priority queues for parallel simulation
on Cray-T3E. Diplomarbeit, Dept. Informatics, University of Hildesheim, May 1998.

[11] Mellor-Crummey, J. M., and Scott, M. L. Algorithms for scalable synchronization on shared
memory multiprocessors. ACM Trans. Comput. Syst. C-9 (1), 1991, pp. 21{65.

[12] Michael, M., and Scott, M. L. Simple, fast, and practical non-blocking and blocking concurrent
queue algorithms. In Proc. 15th ACM Symp. Princ. Distrib. Comput. (PODC), 1996 , pp.
267-275.

[13] Michael, M., and Scott, M. L. Implementation of general purpose atomic primitives for dis-
tributed shared memory multiprocessors. Int. Symp. High Perf. Comp. Arch. 1995, pp. 222{231.

[14] Savage, S, Burrows, M., Nelson, G., et al. Eraser: A dynamic data race detector for multi-
threaded programs. In Proc. 16th ACM Symp. on OS Princ., 1997, pp. 26{37.

9

