

CUG 1998 Spring

 Proceedings

1

VRML for Visualization

James Earl Johnson

ABSTRACT:

VRML, the Virtual Reality Modeling Language, is heading for a browser near
you. VRML promises a write once, view anywhere capability for visualizing the results of engi-
neering and scientific calculations. The same results may be visualized on a multitude of plat-
forms, locally or over the web, using familiar web browsers. The choice of platform determines
the performance of the visualization while the format and functionality remains unchanged.
Simulation results can be packaged in a VRML format file to be loaded by a browser. Alterna-
tively, a Java applet can read an existing data format and inject the data into a running VRML
browser.

1 Introduction

According to authors of The VRML97 ISO specification[1],
“Technically speaking, VRML is neither virtual reality nor a
modeling language.” Rather, they say, “At its core, VRML is
simply a 3D interchange format.”, and that “VRML is a 3D
analog to HTML. This means that VRML serves as a simple,
multiplatform language for publishing 3D Web pages.”[2]

There are a multitude of 3D file formats. Why should I
choose VRML for scientific and engineering needs?

The first reason is cost. VRML97 is a high-level language,
akin to a scripting language or HTML, so it is possible to write
an application quickly. A VRML application need only describe
what should displayed. The VRML browser attends to the
details of how to display the model on its host platform.

The second reason for choosing VRML is the availability of
VRML browsers. Currently, VRML browsers are available on
several popular platforms including the Apple Macintosh, the
PC, and SGI. Furthermore, the leading HTML browser vendors
have pledged to distribute VRML browsers along with their
respective web browsers. This means that a model published in
VRML may be readily viewed by a large segment of the popu-
lation.

The remaining question is whether VRML will perform
adequately for visualization tasks. It must provide the features
necessary for visualization. It must execute the visualization
with acceptable speed. Later in this paper, I will examine three
applications to test the feasibility of using VRML for visualiza-
tion.

I will first identity features of VRML that enable visualiza-
tion, then I will examine methods to get adequate performance.

2 Representing the Model in VRML

2.1 VRML Basics

The VRML97 specification has its roots in OpenInventor

TM

,
which is widely used in visualization. The basic building
construct in VRML97 is called a node. There are 54 node types
defined in VRML97. Each node type has field parameters that
customize an instance of the node type. A node type may also
have input fields that can accept events to alter its state during
display. The node may have output fields which distribute
events generated by the node. Instances of nodes are grouped in
an acyclic graph to represent a model. This is commonly called
a scene graph.

The VRML97 node types may be categorized into several
groups by their function and their legal placement within a
scene graph.

Geometry nodes provide the drawing primitives that repre-
sent all the visible elements of the model. The VRML97
authors deemed a few geometric solid shapes worthy of a node
type: Sphere, Cylinder, Box, and Cone.

Other general shapes and surfaces must be composed of the
geometry primitives of points, lines, and faces. These primitives
are defined by the geometry nodes: PointSet, IndexedLineSet,
and IndexedFaceSet. These nodes need to reference a set of
coordinates points. VRML97 places the coordinate points in a
separate Coordinate node. The separation of geometry from the
coordinates allows for easy animation of the geometry by
allowing new coordinates to be substituted over time. It also
allows multiple geometry nodes to reference the same set of
coordinates points.

These primitive geometry nodes may also reference a Color
node that contains an array of colors to be applied to the geom-

Copyright

 1998. Cray Research, A Silicon Graphics Company. All rights reserved.

2

CUG 1998 Spring

 Proceedings

etry. This is important for visualization, since color is often used
to indicate the value of a computed field at each coordinate
point.

Unfortunately, VRML97 does not define an IndexedPointSet
node. This implies that a PointSet cannot reference a subset of
points in a Coordinate node. This makes it more difficult to
switch between representing a portion of the model as points
instead of either lines or faces.

VRML97 requires each instance of a geometry node in a
scene graph to be contained within a Shape node. The purpose
of the Shape node is to optionally associate an Appearance node
with the geometry. The Appearance node may provide material
color properties and texture for the geometry of the Shape node.

The grouping nodes allow us to build the viewing and trans-
formation hierarchy of a scene graph. They reference a set of
child node instances, and they provide the tree structure for the
scene graph. The Transform node allows us to scale, translate,
and orient the underlying geometry. The Switch node allows us
to selectively choose one of a set of nodes to display. The Inline
node allows us to include VRML from another file. The Group
node simply allows us to reference a set of nodes under a single
node instance.

Interpolator nodes provide key frame animation capabilities
for a model. They use an input event value to interpolate an
output value from the key frame values.

Sensor nodes generate output events based upon the state of
the scene graph. The sensors that respond to the cursor position,
such as TouchSensor, are often used to construct VRML control
widgets. The TimeSensor node generates events at specified
time intervals, and it is frequently used to drive an animation.

The Script node is the extension mechanism of VRML97.
Any functionality not provided by the other VRML97 node
types can be supplied in a Script node instance by the model
creator. A Script node instance can have an arbitrary number of
defined fields, including event input and output fields. The
model creator supplies the Script node instance with program-
ming code to handle events. Browser vendors have not been
required to support any particular coding languages for the
Script node, although Java and ECMAScript are now recom-
mended by the VRML Consortium.

A VRML model is event driven. Node instances may
generate output events that can be routed to the input fields of
other node instances. In order to specify event routing informa-
tion for events, nodes instances need to be assigned a name. This
is accomplished with the DEF keyword. Event routing between
the output field of one node to the input field of another node is
specified with the ROUTE TO keywords. The following VRML
code illustrates the routing syntax:

DEF BUTTON TouchSensor{}

DEF CLOCK TimeSensor{}

ROUTE BUTTON.touchtTime TO CLOCK.startTime

The DEF keyword also provides another capability. An
instance of a node that has been named by the DEF syntax can
be referenced later by the USE keyword.

One last VRML facility will prove useful for us. This is the
node prototype capability specified with the PROTO keyword.
This allows us to compose a new author-defined node type from
existing nodes.

2.2 Examples

I have taken three types of simulation results as examples to
determine the usefulness of VRML for visualization needs:
molecular dynamics, finite element analysis, and computational
fluid dynamics.

The easiest VRML-based visualization to produce was a
ball-stick model for visualizing the results from a molecular
dynamics code. To represent an atom I needed a sphere of a
specified radius and color that I could position throughout the
animation.

I used the PROTO capability to characterize an atom in
VRML as follows:

Switch { choice DEF AtomSphere Sphere {} }PROTO Atom [
exposedField SFColor color
 exposedField SFVec3f scale
 exposedField SFVec3f position
]
{
 Transform {
 translation IS position
 scale IS scale
 children [
 Shape {
 geometry USE AtomSphere
 appearance Appearance {
 material Material {
 diffuseColor IS color
 }
 }
 }
]
 }
}

Similarly, a bond is two cylinders positioned and oriented
between atoms. The color of each cylinder matches the closest
atom.

Switch { choice DEF BondCylinder Cylinder {} }
PROTO Atom [
 exposedField SFColor color
 exposedField SFVec3f scale
 exposedField SFVec3f position
 exposedField SFRotation orientation
]
{
 Transform {
 translation IS position

CUG 1998 Spring

 Proceedings

3

 rotation IS orientation
 scale IS scale
 children [
 Transform { translation 0 1 0 children
 Shape {
 geometry USE BondCylinder
 appearance Appearance {
 material Material {
 diffuseColor IS color1
 }
 }
 }
 }
 Transform { translation 0 -1 0 children
 Shape {
 geometry USE BondCylinder
 appearance Appearance {
 material Material {
 diffuseColor IS color2
 }
 }
 }
 }
]
 }
}

Each atom has a PositionInterpolator node that contains an
array of calculated positions for that atom during the animation.
The output of the interpolator is sent to the atom transform using
the VRML event routing mechanism.

Bonds require an OrientationInterpolator node as well as the
PositionInterpolator.

A simple animation may look like:

DEF A1 Atom {}
DEF A2 Atom {}
DEF B Bond{}
DEF P1 PositionInterpolator {
 key [0 1]
 keyValue [0 0 0 1 0 0]
}
DEF P2 PositionInterpolator {
 key [0 1]
 keyValue [1 0 0 1 1 0]
}
DEF PB PositionInterpolator {
 key [0 1]
 keyValue [.5 0 0 1 .5 0]
}
DEF OB OrientationInterpolator {
 key [0 1]
 keyValue [0 0 1 1.57 0 0 1 0]
}
ROUTE P1.value_changed TO A1.set_position
ROUTE P2.value_changed TO A2.set_position
ROUTE PB.value_changed TO B.set_position
ROUTE OB.value_changed TO B.set_orientation

Figure 1:

A Molecular Dynamics Simulation

The other two examples, computation fluid dynamics and
finite element model, use meshes.

These often have several parts which one may want to selec-
tively display. I created a PROTO for parts:

PROTO Part [
 exposedField MFVec3f translation 0 0 0
 exposedField MFRotation rotation 0 0 1 0
 exposedField MFVec3f scale 1 1 1
 exposedField SFInt32 mode 2
 exposedField SFNode coord NULL
 exposedField SFNode color NULL
 exposedField SFColor partColor 1 1 1
 exposedField SFFloat transparency 0
 field MFInt32 lineIndex []
 field MFInt32 faceIndex []
]
{
 Transform {
 translation IS translation
 rotation IS rotation
 scale IS scale
 children [
 Switch { whichChoice IS mode
 choice [

4

CUG 1998 Spring

 Proceedings

 Shape { geometry PointSet {
 coord IS coord color IS color }
 appearance DEF App Appearance {
 material Material { emissiveColor IS partColor
 transparency IS transparency} }
 }
 Shape { geometry IndexedLineSet {
 coord IS coord color IS color
 coordIndex IS lineIndex }
 appearance USE App
 }
 Shape { geometry IndexedFaceSet {
 coord IS coord color IS color
 coordIndex IS faceIndex
 solid FALSE }
 appearance DEF App Appearance {
 material Material { diffuseColor IS partColor
 transparency IS transparency} }
 }
]
 }
]
 }
}

I use the switch to selectively hide the part, or to show it as
coordinate points, a wireframe of line segments, or a surface of
polygonal faces. By exposing the color and transparency fields
of the Material node, I can adjust the overall appearance of parts.
I can make parts semitransparent to expose internal geometries.
I can differentiate parts by changing their overall color.

I like to place parts in Transform nodes so that I can refer to
parts and slide them out of the way.

Given the PROTO for a Part, I can define an instance of a
part:

DEF PART1 Part { mode 1 partColor 1 0 0
 coord DEF PART1COORD Coordinate {point [0 0 0 1 0 0 1
1 0]}
 color DEF PART1COLOR Color {color[1 0 0 0 1 0 0 0 1]}
 lineIndex [0 1 2 0 -1]
 faceIndex [0 1 2 -1]
}

2.3 Animating a Mesh Model

The coordinates of the mesh are sometime displaced during a
simulation. Also, we may want to color the vertices to display
information about some computed value at each coordinate
point. There are several ways to animate this to show the simu-
lation values over time.

2.3.1 Animating with Interpolators

The simplest method to displace coordinates is to use the
CoordinateInterpolator node. One can simply place all the coor-
dinate points of all the timesteps into the keyValue field of the
interpolator. The CoordinateInterpolator node will generate an

output event with all the coordinates for the timestep which can
be routed to the Coordinate node.

I discovered that VRML97 does not define a corresponding
interpolator node for pervertex color. There isn’t an interpolator
node for an array of scalar values either. I wrote my own
versions of these nodes using PROTOs with Script nodes.

Interpolators have some drawbacks. Using Interpolators
requires the browser to perform a fair amount of calculation and
data copying for each frame displayed. This is even more notice-
able when the calculation is being performed by scripting code
as opposed to native code. Furthermore, a linear interpolation
between computed timesteps may display misleading informa-
tion if the values do not change in a linear fashion.

Figure 2:

A finite element analysis of a pipe being creased.

2.3.2 Animating with a Switch node

The second method I have employed to show animation is to
use a Switch node in which each choice node within the Switch
encompasses a timestep. It can be more difficult to conserve
space with this approach. We would need duplicate geometry
nodes for each timestep so that each could contain the specific
coordinate and color nodes for that timestep. This means the
coordIndex field would need to be duplicated for each timestep
when using either an IndexedLineSet or an IndexedFaceSet.As
long as all the geometry fits in memory, this method displays at
good frame rate. The browser simply traverses a different
subtree for each frame.

CUG 1998 Spring

 Proceedings

5

I think about how much simpler this could have been if
Switch nodes had been allowed anywhere within the node hier-
archy, but unfortunately we can’t have a Switch node select the
Coordinate node of our geometry.

2.3.3 Animating with a Script node

The last method I’ll describe for animating a model involves
setting the coord and color fields for the geometry via a Script
node. It is best to set the node fields of the geometry nodes rather
than setting the point field of the Coordinate node, since the
latter would likely involve copying all the coordinate points to a
new array each time a new frame is displayed.

A simple instance of such an animation Script node follows:

Script {
directOutput TRUE
field SFNode partnode USE PART1
field MFNode coordnode [
 Coordinate {point [0 0 0 1 0 0 1 1 0]}
 Coordinate {point [0 0 0 1 0 0 .5 1 0]}
 Coordinate {point [0 0 0 1 0 0 0 1 0]}
]
field MFNode colornode [
 Color {point [1 0 0 0 1 0 0 0 1]}
 Color {point [1 0 0 0 1 0 1 0 1]}
 Color {point [1 0 0 0 1 0 1 1 0]}
]
eventIn SFFloat set_fraction
url “vrmlscript:
 function set_fraction(f) {
 i = Math.round((coordnode.length - 1) * f);
 if (i < coordnode.length)
 partnode.set_coord = coordnode[i];
 if (i < colornode.length)
 partnode.set_color = colornode[i];
 }
 “
}

3 Getting Performance from VRML

3.1 General Performance Tips

There are several performance aspects to consider when
structuring a VRML based visualization: the time to load the
model, the time required before the viewer can start viewing and
interacting with the model, and the frame rate at which the model
can be viewed.

 The load time will be most sensitive to file size. File size may
be the dominating consideration if the VRML is being loaded
across a slow network.

The simplest action to reduce network transmission time is to
compress the file. This may slightly increase the time for the
client to load the model as it now must decompress the file first.

File size can be reduced by stripping out comments and
superfluous white space. This will improve both transmission

and parsing time, at the expense of making the file less readable
to humans.

The PROTO construct can also greatly reduce the file size.
The use of the Atom PROTO and the Bond PROTO in the
molecular dynamics example replaced a significant amount of
redundant VRML code.

Run time performance is affected by several factors. In
general, we want to do minimize the amount of calculation
required to generate a frame, as well as the amount geometry we
need to render. This means limiting the use of interpolators and
scripts.

Memory usage also effects run time performance. Frame rate
will likely plummet if the entire model no longer fits memory.
The DEF and USE keywords can be used to decrease memory
usage. For example in the molecular dynamics model, I defined
a Sphere node outside of the Atom PROTO and I referenced that
single Sphere node within the Atom PROTO. This means that all
instances of Atoms will share one Sphere. The Browser will only
have to store one set of coordinates for a sphere. If I had simply
included a Sphere node within the PROTO, the browser may
well have created a new sphere, along with all its implied coor-
dinates, for each atom.

3.2 Model Translation Processes

I have used two processes to produce VRML visualizations
from simulation data. First, I have written translator applications
that read simulation result files and write out corresponding
VRML files. Second, I have written java applets that read result
files and interact directly with a running VRML browser using
the External Application Interface.

Writing out a VRML file reduces the dependencies on the
java implementation and the interface methods of the HTML
browser. However, then all controls for the visualization must
be VRML widgets, for which there are no conventions yet.
Otherwise, one may have Script nodes launch control windows.
However, script node language support is as yet inconsistent, so
one cannot rely on having either ECMAScript or Java available
from a Script node.

Translating into a single VRML file can produce a huge
ASCII file that takes a long time to parse and start executing. I
placed the coordinates for each step inside an Inline node so that
the mesh would appear right away and the frames would be read
as requested.

A java Applet allows much more programmer control of the
run time environment. It allows the data to be transmitted in a
compact binary format. The applet can inject new frames into
the browser as they are read, allowing the user to start visual-
izing the initial frames immediately.

3.3 The Evolution of the HyperTrace Viewer

The most involved VRML project I have undertaken, was to

write a VRML-based viewer for HyperTrace

TM

 visualization.
HyperTrace is an analysis program for computational fluid
dynamics simulations. HyperTrace technology traces and visu-
alizes thousands of particles in a computed CFD flow field.

6

CUG 1998 Spring

 Proceedings

My first step was to write a translation program that would
read the binary HyperTrace file format and print out a VRML
ASCII format file. That file could then be loaded into a web
browser and viewed by the VRML plugin.

I represented the mesh as a semitransparent IndexedFaceSet.
I put the points for the particle trace into a PointSet node. I put
all of the point positions for every time step into a CoordinateIn-
terpolator node. HyperTrace also has the option of coloring each
particle to represent its velocity at each time step. Since
VRML97 doesn’t have an interpolator for arrays of colors, I was
forced to write a Script node for that task.

The frame rate at this point was terrible. The script-based
interpolator could not evaluate tens of thousands of particles for
each frame in a reasonable time. Even using the CoordinateIn-
terpolator alone was slow since it had to calculate all the coordi-
nates points then copy them to the Coordinate node.

I adopted the animation method using a Switch mode. This
required a PointSet containing a Coordinate node and a Color
node for each time step, but replicating those nodes produced
trivial amount of overhead. The animation now ran reasonably
close to the speed of the visualization program written directly
in OpenGL.

Finally, I sorted the particles into 32 different colors at each
timestep. I created an Appearance node for each color. Each
time step under the Switch node was now a Group node
containing a Shape node with a PointSet and an Appearance for
each color. This eliminated the need for the pervertex Color
node, and nearly doubled performance for large particle traces.
The VRML viewer was now displaying at the same frame rate as
the HyperTrace program.

The translation approach still had a major drawback. The
VRML file was huge, and it took a long time to transmit, load,
and parse the file. In order to have the viewer display some initial
frames more quickly, I changed the translator to write a separate
VRML file for the particle positions for each frame. The main
file then referenced those files from an Inline node for each time
step. Now viewer displayed each frame as it was being loaded.

Using a translator program required a preprocessing step
before the HyperTrace output could be visualized. My goal had
been to provide a convenient, web-based tool to view results. I
feared that making users translate a file first before they could
load the resulting VRML file would discourage use. Further-
more, HyperTrace files are a compact, binary representation of
the model that would be much quicker to transmit over a
network than the large ASCII text VRML equivalent. This was
the impetus for using a java applet to load the HyperTrace file
directly and communicate with the VRML browser via the
External Application Interface[3], EAI.

The java applet allowed me to place the model viewing
controls within the java applet. This allowed the full VRML
window to be used for viewing the model itself, rather than
containing control widgets.

Most of the performance measures I had used in the transla-
tion process still applied when using the EAI. Only the Inline
nodes were no longer needed.

I executed the applet’s file reading code in a separate java
thread. This allowed the main thread to respond immediately to
user interaction. The read thread adds geometry to the VRML
browser as it is read. Therefore, the viewer can start viewing
geometry and frames with little delay.

I needed to retain references to some nodes in order to modify
them during the simulation. I avoided retaining any references to
large arrays used within nodes, since that would then require a
copy of the array to be allocated for both the java applet and the
VRML browser.

There were several performance considerations for the java
code. With Just-In-Time compilers for java, the java computa-
tion code performed very well. But, the performance of io
methods in java vary greatly. I initially used the ReadByte
method, but this proved very slow. I needed to read larger quan-
tities of data into a program buffer to get good performance.

The other major time consumer was memory allocation. The
EAI method for setting coordinate points requires a two-dimen-
sional array of exact length as an argument. Since I was sorting
the particles by color for each time step, each array would almost
invariably be a different length, preventing the reuse of the
previously allocated array. Memory allocation was consuming
up to 90 percent of execution time.

I was not able to convince browser vendors to add a method
to the EAI specification that would also take a length argument
for arrays. I resorted to work-around involving a Script node and
a feature of ECMAScript. I now reuse a two-dimensional array
that is large enough to hold any set of particle points in the
model. I pass the array as an input event to a Script node, which
then copies the full array into browser allocated memory. I then
pass the length into the Script node, which then truncates the
array to the correct length, and copies it to the Coordinate node.
I created this Script node from within the java code as follows:

 String ScriptString =
 “Script {“ +
 “directOutput TRUE “ +
 “field SFNode coord NULL “ +
 “field MFVec3f point [] “ +
 “eventIn SFNode set_coord “ +
 “eventIn MFVec3f set_point “ +
 “eventIn SFInt32 set_length “ +
 “url [“ +
 “ \”vrmlscript: “ +
 “ function set_coord(node) { coord = node;} “ +
 “ function set_point(points) { point = points;} “ +
 “ function set_length(len) { “ +
 “ point.length = len; “ +
 “ coord.set_point = point; “ +
 “ } “ +
 “ \” “ +
 “] “ +
 “}”;
 Script = browser.createVrmlFromString(ScriptString)[0];

CUG 1998 Spring

 Proceedings

7

 Node PointSet = browser.createVrmlFromString(“PointSet
{}”)[0];
 ((EventInSFNode) Shape.getEven-
tIn(“set_geometry”)).setValue(PointSet);
 Node Coordinate = browser.createVrmlFromString(“Coor-
dinate {}”)[0];
 ((EventInSFNode)PointSet.getEventIn(“set_coord”)).set-
Value(Coordinate);
 ((EventInSFNode)Script.getEventIn(“set_coord”)).set-
Value(Coordinate);
 ((EventInMFVec3f)Script.getEventIn(“set_point”)).set-
Value(points);
 ((EventInSFInt32)Script.getEventIn(“set_length”)).set-
Value(idx);

The VRML HyperTrace viewer now performs well. It is uses
VRML, java, and ECMAScript, that are widely supported, so
that this same viewer can be used on almost computer platform.

4 Conclusion

The availability of VRML browsers make VRML a desirable
format in which to disseminate simulation results. VRML can
represent many of the common models used for visualization.
With careful use of VRML, scripting and java, a VRML visual-
ization can perform well.

Figure 3:

The VRML HyperTrace Viewer

Acknowledgements

The author wishes to thank Cal Kirchhof, Silicon Graphics,
for his support of this project. Thanks also to the HyperTrace
team from Silicon Graphics: L. Zullo, M. Liu, C. Andreasen, R.
LaRoche, and S. Choudhary.

References

[1] ISO/IEC 14772-1, The Virtual Reality Modeling Language, 1997.

http://www.vrml.org/Specifications/VRML97

[2] Rikk Carey, Gavin Bell, The Annotated VRML 97 Reference Manual, 1997.

http://www.best.com/~rikk/Book/book.shtml

[3] C. Marrin, Proposal for a VRML2.0 Informative Annex, External Authoring
Interface Reference, January 21, 1997.

[4]External Authoring Interface Working Group,,

http://www.vrml.org/WorkingGroups/vrml-eai/

[5]HyperTrace, http://wwwche.cray.com/hypertrace/

Trademarks

OpenInventor is a trademark of Silicon Graphics, Inc.

HyperTrace is a trademark of Silicon Graphics, Inc.

