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Abstract

Parallel and distributed computing is a way to meet the increasing demand for engineering and
computational power in order to perform scientific and technical simulations. To make use of these
new paradigms we are developing an agent based (simulation) environment which is operating on
various computers at different locations in Europe.

In order to set up a multi-agent system and to integrate modules, objects and services it  is necessary to

•  Modularize the overall problem

•  Develop a strategy of distribution

•  Parallelize and optimise the computationally expensive modules

•  Encapsulate modules as independent processes

•  Develop a strategy for the integration of (competing) services into a simulation system

 Solutions to most of the problems are proposed. Communication between agents takes place on the
basis of CORBA mechanisms. A special Service Agent Layer (SAL) provides methods to make
agents from modules, objects or services. Experiences with this architecture and the implementation of
parts of it will be reported. Further possibilities and difficulties of this approach are outlined by
referring to the example of the dispersion of air carried particles. This example consists of four
different parts, of which the simulation of the wind field and the simulation of air carried particle
transport form the computationally expensive core of the application. They are run on a CRAY-T3E of
IDRIS-CNRS in Paris.
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1 Introduction and Motivation

It is quite common in our society to distribute responsibilities. In politics we are eager to distribute power and in
industry a great part of the success is due to the global distribution of work. Parts are produced in parallel,
transported over the traffic network and arrive at the factory just in time to be assembled to a product like a car, a
building or an aircraft.

In computer science this seems to be different. The development from mainframe environments to client-server
applications was an essential improvement, but this is just the tip of the iceberg of sensible distribution strategies.
In our society we do not need primarily servers or more drastically masters and slaves but services. This holds for
simulation systems as well if we want them to exceed a certain level of complexity.

In this paper we present a our ideas and first results concerning a service and agent oriented computational
environment. We do this using the example of air pollution dispersion simulation. Such simulations are necessary
in connection with plants emitting undesired aerosols or gases into the atmosphere. Various steps have to be taken
to set up such simulation systems for use in emergency situations. They include

•  a digital description of the terrain

•  the collection of initial and boundary condition from measurement stations

•  meteorological calculations to determine the local wind field around the source of emission

•  dispersion calculations to determine the transport of the pollutants

•  estimation of consequences of possible air pollution

•  and finally a critical expert judgement of the calculated results and the determination of counter measures.

Problems of this kind require experts from different fields, data from different sources, methods running on
different servers and interpretations from different viewpoints. This application is thus an appropriate candidate to
demonstrate the benefits of distribution. In order to show the main ideas of the agent oriented approach we
concentrate on four major components:

•  The component TOPO allows the construction of the digital topography from data provided by
geographical systems.

•  The component NOABL allows to determine the local wind field using both measured values and the mass
balance equation in complex terrain.

•  The component PAS allows the calculation of particle dispersion and the estimation of concentration fields.

•  The component DOSE estimates the wet and dry deposition and effects on human beings. For
demonstration purposes within this paper it is replaced by the graphical system AVS which visualizes the
concentration field of the pollutant.

Each of these components require specialists to operate them. Therefore the integration of these components also
requires the integration of their expertise. The multi-agent system we develop (the so-called Logical Client) also
facilitates tele-cooperation with experts.

In this paper we will introduce the agent-oriented paradigm and describe the communication framework and the
multi-agent system developed. As an example of an agent within the system we will focus on the computationally
most expensive processes, which were carried out on a CRAY3TE supercomputer. Details about their internal
structure and the parallelization strategy will be given. To demonstrate the potential use of the agent oriented
paradigm we append a video illustrating a team of agents exchanging messages.

2 The Agent-Oriented Paradigm



Objects in the sense of the object-oriented paradigm encapsulate an internal state, communicate via message
passing and have methods that allow operations on their internal state. As an enhancement of this paradigm,
computer agents are assumed to have a formal version of mental states, which dictate the agent's actions and
which are affected by messages they receive. An agent (within the context of this work) is a system that - as a part
of a virtual environment - receives information from its environment and influences it to reach specific goals
[Franklin96]. A crucial criterion for an agent is its autonomy. That means, that it has the ability to act, is
independent and has the control over its internal state. An intelligent agent is a computer system that is able to act
flexibly and autonomously in a certain environment. That implies that it acts in a reactive, proactive and social
manner.

To do this, agents have to communicate with each other. The ability to communicate is essential but difficult to
implement. For a better understanding of the requirements we can compare the communication between agents
with the exchange of mail between humans. It is necessary to have paper, an envelope, the right address and the
postman, who delivers the mail. But the importance of all these things is low compared to the importance of an
agreement of the communication partners concerning the language and the definition of the vocabulary used in the
message. In analogy, three levels of requirements for inter-agent communication can be identified:

•  a distribution system to enable the agents to exchange messages (analogous to the letter-box, postmen, ...)

•  a syntax and protocol for the exchange of messages (analogous to the envelope with the address, the
sender, ...)

•  a commitment about the vocabulary used for the content of the messages (the language and domain of
problem)

 In order to meet these requirements we have developed a framework for the electronic message exchange between
software agents. The following sections describe the framework according to the three levels mentioned above.

 2.1 CORBA for Data Transfer and Object Communication

 The communication between agents in open, distributed and heterogeneous systems with different platforms,
programming languages and network protocols faces several problems. However, the CORBA (Common Object
Request Broker Architecture) standard offers a way of linking and using remote objects (in the sense of object-
oriented programming). It has been developed by the Object Management Group [OMG97], and in the meantime
there are several implementations (ORBS) of the standard for many platforms and programming languages.
However, care has to be taken when designing distributed systems as CORBA communication is relatively
expensive. Therefore the objects should not be finely grained and thus minimise CORBA communication. We are
using omniORB, which is a freely available CORBA implementation and was developed by the Olivetti and
Oracle Research Laboratories [OmniORB98].

 2.2 KQML as Message Protocol

 Concerning the conventions about the syntax and the protocol for the exchange of messages a lot of work is
already done: Proposals have been made for agent communication languages, which are independent of the
content of knowledge being exchanged or communicated [Labrou97].

 KQML seems to be an adequate open standard for exchanging knowledge and performing communication. It
consists of a set of message types (performatives) that covers almost all needs of inter-agent communication. A
typical KQML message implementation in C++ could read like this:

 askOne(sender, receiver, inReplyTo, ReplyWith, language, ontology, content);

 The use of the performative askOne  means that the sender  wants to know something from the receiver .



answers being mapped to queries. language , ontology  and content  contain information and different
levels of meta-information about the query. KQML also provides a protocol for each message performative, that
is, the receiver knows what kind of reaction the sender of the message expects (e.g. one reply, many reply
messages, forwarding the message to a more suitable agent, ...). It is this protocol rather than the syntax we take
advantage of within our work. In section 5.1 the recommend  performative is described as a further example of a
KQML message.

 2.3 Ontologies as a Specification of the Vocabulary

 Fully understanding and specifying the domain of interest is essential for successful communication between
software agents, especially if they are developed by different people. An ontological model of the system is not
easy to achieve but almost indispensable.

 Using artificial intelligence terminology, an ontology is a model of some part of the world and is described by
defining a set of representational terms. It provides a vocabulary for representing and communicating knowledge.
Developing an ontology

•  enables agents to use and share knowledge

•  provides a better understanding of some area of knowledge

•  helps people to reach a consensus in their understanding of some area of knowledge.

 Especially the need for ontological commitments, which enables a set of agents to communicate about the domain
of interest, makes the design of an ontology a critical initial step when designing an agent-enhanced information
system.

 Tom Gruber of the Stanford University identified five criteria for the design of ontologies [Gruber93]: Clarity,
coherence, extensibility, minimal encoding bias and minimal ontological commitment. Especially the demand for
minimal encoding bias - which means that the ontology should be specified at the knowledge level without
depending on a particular symbol level encoding - leads to the use of the Knowledge Interchange Format (KIF),
which has been designed at the Stanford University [Gensereth92]. Because KIF provides a representation of
knowledge about knowledge, it gives many possibilities for exchanging, reusing and validating models at the
knowledge level. This topic is discussed in more detail in [Grohmann98].

 As mentioned before, designing the ontology is a crit ical initial step in setting up a Multi-Agent System. In our
work we use a combination of the object-oriented (OO) and the artificial intelligence (AI) paradigm. Fig. 1 shows
how these two paradigms result in the EIS Ontology. OO methods are used for the analysis of the information
and the system components, resulting in an object model. On the other hand (AI paradigm) the result of the
knowledge analysis are rules that describe relationships between and the behaviour of the objects (words of the
vocabulary). Both results, the object model and the rules, form the EIS Ontology.
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 Fig. 1: Paradigms for building the EIS Ontology

 In practice and because of the high complexity of the systems to be built, the information analysis and the
knowledge analysis cannot be performed separately. The modelling will rather be an iterative process that starts
with the analysis of the information and system components to obtain a basic object model. This model consists
of classes, relations, functions and object constants. In the attempt to formulate rules operating on this basic object
model, one is likely to face a lack of words to describe certain rules and dependencies. This lack of words gives
rise to a refinement of the object model. After some iterations the object model and the rules will provide a
satisfactory description of the domain of interest.

 3 The Service Agent Layer (SAL)

 The last chapter dealt with the different levels of requirements concerning communication between software
agents. We also have outlined how we meet these requirements and which standards are used. The
implementation of the framework was another important step; the result is the so-called Service Agent Layer
(SAL). While a service is a reactive software component, the SAL includes several abilities that are characteristic
for agents: communication (social behaviour) and proactivity. The service together with the SAL can be regarded
as an agent.

 Before describing the architecture of the SAL in more detail, it might be helpful to introduce the notion of a
session within the SAL. A session is a logical unit that is responsible for a conversation, i.e. it receives (related)
incoming messages, reasons about them, stores and processes relevant data and sends out related messages. An
agent can run different sessions simultaneously. Sessions can be created and deleted at runtime. There might also
be an initial session which lives as long as the agent is running and takes over the proactive part of the agent, e.g.
by advertising its service and abilities and by setting up contracts about the conditions of use.

 Clearly, what happens inside a session is specific for an agent. In practice this lead to an abstract class for sessions
which has to be implemented for each service attached to a SAL. On the other hand, there are many other parts of
the SAL that are shared by all agents, including the message receiving, queuing and sending mechanisms.
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 Fig. 2. Architecture of the Service Agent Layer (SAL)

 Normally the SAL and the attached service will run within the same process. There are, however, cases where the
service and the SAL cannot be compiled and linked together. Then special ways of data exchange have to be used,
e. g. via DDE (dynamic data exchange), RPC (remote procedure calls) or a graphical user interface when a human
user communicates via the SAL with other agents. These cases are very important because they allow re-using
own or third-party services at low adaptation costs.

 The basic architecture of the SAL is shown in Fig. 2. Incoming messages are put into a message queue from
where they are routed to an appropriate (either already existing or newly created) session.

 Inside the session, the next step can be very complicated: Appropriate reactions to the incoming message have to
be found. This is supported by a rule-based system. The knowledge base of this system consists of session-
specific knowledge and of common knowledge, which is shared by all sessions within a SAL. According to the
content of the incoming message, the session-specific knowledge is updated. Depending on the knowledge
(which now includes the contents of the message as well as results from previous messages) and on the rules of
the inference engine, it is decided whether and how the incoming request is handled. Among many other
possibilities, the session could

•  Refuse to handle the incoming request and inform the sender of the message about the refusal

•  Send a message to tell the conditions of use and ask whether the sender is accepting these conditions

•  Send a message to ask for more details

•  Update the common knowledge base

•  Create a working object, start the service

•  Invoke a method of the working object

•  Forward the results of the working object to the request sender

 Outgoing messages are completed by the message builder and put into a queue. There is a thread pool whose
threads are finally delivering the messages via CORBA to the recipients.

 After this discussion of the communication framework and the Service Agent Layer, we want to give a
description of the overall architecture of the Multi-Agent Systems developed in our department.



4 Architecture of a Distributed System Based on the Agent-
Oriented Paradigm

The distributed system we are developing has the structure shown in Fig. 3.
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Fig. 3: Architecture of the distributed system

Besides integrating the modules mentioned already as services at least two additional agents have to be included.
These are the Repository agent and the Administration agent.

The purpose of the Repository agent is to exchange data between services. The exchange of large data via
CORBA and the SAL is much too expensive. Therefore different ways have to be provided for this task. Fig. 4
illustrates the basic principles of the Repository concerning the usage and the separation of the data flow and the
control flow.

Service A

SALSAL

Service B

Repository

SAL

Data Flow
Control Flow

Fig. 4:  Data and Control Flow Using the Repository Agent

The purpose of the Administration agent is to administrate the agents of the system and to coordinate their
cooperation. Like the other agents the administration agent can be realised in various ways. Usually we prefer the
so-called Strategy Service [Grohmann98]. For the presented system however we have chosen an implementation
which supports the user in managing the system via a graphical user interface (GUI).



5 Adaptation of Special Agents to CRAY Computers

The agent-oriented approach allows the development of different services operating at different locations and by
different teams. By this distribution it is possible to use tools and computers which are most effect ive to fulfil a
certain task within the multi-agent system. In the present scenario we have distributed work between the
University Paris 6 and the University of Stuttgart. University Paris 6 took over the optimisation of the services
NOABL and PAS and the validation of the calculations results by comparison with experimental data.

The pollutant atmospheric dispersion constitutes an important research theme of these last years. It is a question of
assessment and control of the pollutant materials (chemical, radioactive, ...) in the environment. In accidental
situations, it is necessary to predict in short laps of time the pollutant rate at build-up area. Generally, programs
simulating the pollutant spread into atmosphere consist mainly of the parts:

•  data collected from meteorological and radiological stations

•  data concerning topography

•  windfield computing

•  pollutant transport and diffusion calculation

•  calculation of pollutant concentration, deposition, estimation of internal and external doses, etc.

•  visualization and evaluation of consequences

To meet the requirements for accuracy and faster execution times, massively parallel processing will be used.

5.1 Optimisation of the NOABL Module

The NOABL (NOAA Boundary Layer) program[TRACI78] allows to simulate a mass-consistent windfield over
complex terrains. Like any model it is an abstraction of the reality. For the purposes we are dealing, it is the most
appropriate. This model considers a conformal coordinate system with a non constant vertical step. This variable
step, smaller over the raising surface, allows the bottom boundary condition to be defined more accurately and
secondly the option of variable vertical zoning improves the accuracy and economy of the model. The using of
supercomputers is justified by the complexity of the model.

Mesoscale atmospheric models cover domains, the horizontal dimensions of which extend up to some hundred
kilometers and the vertical dimension up to some hundred meters. The physical model of NOABL leans on a
mass conservation law[Pielke84] with the appropriate boundary conditions. A simplified form of this equation
has been used to represent the mass conservation, also called Diagnostic Equation (the time-dependent term
being absent).
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which the correction windfield ( )*** ,, wvu  will be computed. After replacing into the mass conservation

equation, we obtain a Poisson Equation’s:
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In the case of flat terrain surface, the previous Cartesian Coordinate Model is well adapted and can be used. The
problem becomes more difficult when complex terrain surfaces are to be considered within the study domain
where the accuracy is highly dependent upon the finite difference resolution. To solve this difficulty, the vertical
coordinate will be transformed in such a way that the terrain surface becomes a coordinate
surface[MASSMEYER89]. The expression of the Poisson’s Equation in the Conformal Coordinate System will

be the following one(σ  represents the conformal coordinate, sz the terrain surface, st zz −=π , with tz
the constant altitude of the top of the mesh):
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This expression will be then differentiated in order to obtain the numerical model. Concerning the numerical
model, the components of velocity are computed at the center face of each cell while the values of perturbation
velocity potential as well the local divergence are computed at the center of each cell[MASSMEYER89]. The
Poisson equation on the conformal system is written on finite difference form and the following expression has
been obtained:

 ( ) ( ) ( ) ( )jiDjiCjiBjiA kkjikkjikkjik ,~*,~*,~*, 1,,,,1,, =Φ+Φ−Φ +−

The algorithm used on the NOABL program to compute a free divergence solution for the velocity field is SLOR
(Successive Line Over Relaxation) [NAKAMURA86]followed by a Thomas algorithm for each column (solving
of a linear system the matrix of which is 3-diagonal) [GOURDIN89].
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An analysis of the serial version of NOABL program led us to the conclusion that it would be worth to parallelize
only a part of this program, more precisely the part computing the perturbation velocity potential. So, at the
beginning, in order to avoid the communications during the computing of the initial windfield, each processor will
compute the initial windfield over the entire domain, and for the free divergence windfield computing, it will
consider its sub-domain.

First of all, it is well known that, at a given iteration, the updated values of a column are used as soon as they are
computed. So each sub-domain cannot start computing if a first column result has not yet been furnished from the
previous sub-domain. Following this reasoning, the idea of parallelizing the SLOR algorithm is a very simple
one. The computing starts at the first sub-domain. The first result column is obtained and is sent to the next sub-
domain, the second one can start computing, and so on.



The SLOR algorithm adopted for the computing of the perturbation velocity potential led us to choose the
geometrical form of parallelism. So, the parallelization of the NOABL program has been done by combining a
pipeline scheme in one horizontal direction with a parallel scheme computing in the other horizontal direction. A
rectilinear grid of processors has been used.

The first parallelized version has been obtained on MEIKO-CS2 parallel machine utilizing PVM library. The
program has been written with Fortran 77. Simulations have been done with a computing domain having 150
points in the two horizontal directions (x-direction and y-direction) and 45 points in vertical direction. The results
presented in the following (over CRAY T3E parallel machine) have been obtained with relaxation parameter value
equal to 1.5. The two possibilities of program stopping are: first a minimum residual value has been taken equal
to 0.05 and second a maximal number of iterations has been fixed equal to 5000.

In order to compute the Theoretical and the Real Speed-Up, runs have been made on one processor of the parallel
machine in order to determine the part (in execution time terms) of the program having been parallelized. It is with
this aim in view, we have used the Amdhal law for computing the Theoretical Speed-Up:

 ( ) pss NPP
S

−+
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where:

S: Speed-Up

sP : Part of the program having not been parallelized

pN : Number of processors used for program’s runs

The NOABL program has been implemented on CRAY T3E parallel machine using MPI library. The running
times, as well as the theoretical speed-up and the real speed-up obtained on CRAY T3E, are represented in the
following Table.

 

 Processors’ Number Running times
(s)

 Theoretical Speed-Up Real Speed-Up  Efficiency (%)

 1  7167.30  1  1  100

 2  3778.29  1.98  1.90  94.86

 3  2611.89  2.94  2.75  91.47

 5  1705.86  4.79  4.20  84.03

 6  1448.70  5.69  4.95  82.46

 10  976.52  9.12  7.34  73.40

 15  739.56  13.03  9.69  64.61

 25  575.74  19.86  12.45  49.80

 

The SLOR algorithm is not the best-adapted algorithm for being parallelized. The dif ferences noticed between the
Theoretical Speed-Up and the Real Speed-Up are due to the combined parallelization scheme ( pipeline + parallel )
and the increasing part of processors communications time with the number of processors. The efficiency
decreases with the number of processorsbecause of the particularity of theSLOR method



However, it is interesting to observe that after parallelization the running times have been noticeably improved.
The parallel machines have permitted to obtain a real improvement of code performances. With 150x150x45 grid
points, we obtained 108 Mflops with two processors up to 960 Mflops with 50 processors, results comparable
with those provided by [CHERGUI96]

The parallelization of the NOABL program (the serial version was furnished by IKE) has been realized as a part
of a common collaboration between OECD, IKE and CNAM. Runs on CRAY-T3E of IDRIS-CNRS have been
done through the Project n: 974111.

5.2 Optimization of the PAS Module

The program PAS as an important part of the MESYST system is used for the simulation and the computing of
the atmospheric pollutant dispersion. The physical model of PAS leans on the lagrangian model. So the
dispersion phenomena has been modelized considering a great number of particles which are emitted by the
source and held by the wind. At the end of a given period of time we consider the number of particles at each grid
cell and after that, the concentration of the pollutant at each grid point will be computed.

The mathematical model describing the displacement for one particle during a time step equal to τ  is given by the
following formula[Chino87]:

 ( ) ( ) ( ) ( )zyxwvuzyxzyx oldnew ,,*,,,,,, ∆++= τ

where ( )newzyx ,,  represents the coordinates of the new position occupied by the particle, ( )oldzyx ,, the

old position of the particle, ( ) τ*,, wvu  represents the displacement due to the presence of the wind and at

last the term ( )zyx ,,∆  takes into account the movement of the particle as result of the diffusion.

To compute the displacement due to the windfield we have considered the results provided by the NOABL

program. Wind velocity ( )wvu ,,  at the particle position has been calculated by the 
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interpolation of wind vectors on the eight grid points which surround the particle. Equation is:
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where ( )jwvu ,,  is wind vectors at grid j  and jr  is the distance between particle and grid j .

An important part of the PAS program is this one simulating the displacement of the particle due to the diffusion
phenomena. We have implemented two algorithms for this purpose.

The first one considers a Brownian Model. The fluctuation steps are calculated by a simple distribution function
which has a standard deviation:

 τσ ii K2=     where zyx ,,=

The diffusion coefficient iK  are derived from the Pasquill-Gifford theory[PASQUILL83] according to the

atmospheric stability category determined from routine measurements. The mathematical expression for the
diffusion coefficients are the following ones:
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The values for the parameters zzyyxx αγαγαγ ,,,,,  are provided by the experience and depend on the

stability conditions. u  represents the wind velocity at the particle point and s  gives the distance of the particle

from the emission point.

The random values for the displacements on each direction have been obtained by a random number generator

following a Brownian law. So we will have for zyx ∆∆∆ ,,  the mathematical expressions:

 [ ]xx RKx *2 τ=∆ [ ]yy RKy *2 τ=∆ [ ]zz RKz *2 τ=∆

[ ]iR  represents a Brownian distribution function with the three series generated for each direction being

independent.

The numerical model in PAS employs a uniform distribution function in order to accelerate the calculations. After

these modifications the expressions for zyx ∆∆∆ ,,  become:
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For computing the concentration of the pollutant at each domain point, a Monte-Carlo Method has been utilized.
We consider a great number of particles that we follow during their displacements. We associate to each particle a
weight expressed on kg for example. After a given period of time we compute the number of particles present on
each grid cell and the pollutant concentration at the considering point can be calculated. We will repeat this
operation several times and an average for the concentration value will be calculated in order to have a better
approach of the reality.

The Monte-Carlo method permitted a parallelization of the PAS program to be done without difficulties. The code
parallelization has been done by considering the particles set which has been divided into sub-sets. Each sub-set
has been dealt with by one processor. So a set of processors has been used for the program runs.

The execution model was SPMD and MPI library has been utilized in order to assure the program portability. Our
objectives were: first to reduce the execution times and secondly to improve the accuracy of the model by
increasing the number of particles considered. The following table presents some results obtained after the
parallelization of the program on CRAY T3E of CNRS-IDRIS at Orsay.

 

 Number of
processors

 Execution time
(s)

 Efficiency (%)  Speed-Up

 1  400.55  100.00  1.0

 2  211.53  94.68  1.9

 4  107.41  93.51  3.73

 5  85.67  93.23  4.68

 8  56.22  89.06  7.13

 10  45.96  87.16  8.72

 20  28.39  70.55  14.11

 

The second algorithm we have implemented for simulating the diff usion phenomena is based on the fr actional



displacement due to the dispersion does not depend on 
21τ  but the dependency is like 

ατ
where 15.0 <<α  in the case of atmospheric dispersion. Richardson proposed the value of 0.66

[Richardson26].

With this new model, the mathematical model becomes:

 [ ]xx RKx *2=∆ [ ]yy RKy *2=∆ [ ]zz RKz *2=∆

where [ ]iR  indicates a random number distributed following a fractional Brownian law. Fig. 5 and 6 explain the

differences existing between a Brownian diffusion and a fractional Brownian one.

 

 

Brownian Motion
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 Fig. 5: Particle displacement stays "close" to zero using the Brownian model.

 

Fractional Brownian Motion
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 Fig. 6: Particle displacement are greater using the Fractional Brownian model.

 

As one can see, the distance of one particle following a fractional Brownian distribution, from the initial point is
greater than that of one particle following a Brownian distribution. In other terms, the particles cloud in the first
case will be more extended that this one on the second case.

For simulating the fractional Brownian motion two algorithmshave beenimplemented:



•  Mandelbrot algorithm

•  Algorithm proposed by Chan and Wood using FFT

The second one being more efficient and faster than the first, it has been utilized for our simulations. The results
obtained in term of parallelization (Speed-Up and Efficiency) with the fractional Brownian model are as good as
those obtained with the Brownian model. The execution times of the PAS program with the fractional Brownian
algorithm are greater than the execution times with Brownian one, but the new model permitted us to improve the
accuracy of simulation, validated with SIESTA experiments.

6 SIESTA Experiments and Model validation

The aim of the project named SIESTA (    S    F6    I   nternational     E    xperiments in     ST    agnant     A    ir) was to obtain knowledge
of the general nature of the turbulence, advection and atmospheric dispersion [Gassmann86].

The SIESTA Experiments have taken place in a Swiss region (Aare Valley). The dimensions of our study
domain were 30 km on X-direction, 30 km on Y-direction and 1100 meters on the vertical direction (with 120
points on X and Y and 22 points on Z). For studying of the atmospheric dispersion, 

6SF tracer has been used.

This is a chemical ly stable and non-toxic gas.

For the validation of our dispersion model, we have considered the day of November 30, 1986. During this day a
weak south-west wind has been noticed and the general atmospheric conditions were stable. For the simulations,
the period of time from 8 a.m. to 2 p.m. (let be 6 hours in all) has been considered. During this period some
meteorological stations have provided data concerning the wind speed and the wind direction. At the same time,
the coordinates of the points where these measurements have been taken, have been given. With these
meteorological data we have simulated the windfield at each 30 minutes. This windfield has assumed to be
constant during the 30 minutes following. So we have computed 12 windfield at all.

Consequently, with these 12 windfields we have obtained 12 tracer clouds, providing the position of 6SF  tracer

at each end of the period. By SIESTA Experiments, we have been given the values of tracer concentration at a
given number of domain grid. In order to compare the accuracy of our two models (Brownian model and
fractional Brownian model), we have computed the distance between the corresponding tracer points (real
measurements and values obtained by simulation with the two models). The formula used is the following one:

  −=
sintpo_a ll

simulatedrealclouds_between concentconcentdist

By applying this formula in our two cases, we have obtained with the Brownian model a distance which were
greater than this one obtained with the fractional Brownian model allowing us to have a better description of the
reality with the fractional Brownian model.

The two colour images given in the appendix present the position of the tracer cloud at 2 p.m. calculated with the
Brownian model (file brownorm.ps) and the fractional Brownian model (file browfrac.ps), respectively.

7 Experimentation

The functionality of an approach as the one presented in this paper becomes most obvious by giving a
demonstration. Therefore we have added a video documentation of the demonstration given at the oral
presentation of this paper (files demo.mpg and demo.avi, which is more legible). It can be viewed with many
video tools, e.g. with a standard MPEG player. A version of this demonstration including an audio explanation



The parallelization of different modules allowed us to obtain a high performance product by decreasing obviously
the running times. At the same time, the choice to parallelize by using the MPI library made our system portable.

The agent-oriented approach seems to be a powerful technology whose importance will probably rise during the
next decades. It is currently applied as a basic technology of three different projects within the Department of
Knowledge Engineering and Numeric at Stuttgart, including a real-world project to monitor and simulate the
dispersion of radioactivity within an emergency system in case of a nuclear accident.
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