
1

Thread-Parallel Job Performance in a Time Sharing
Batch Environment on Origin 2000 Systems

David McWilliams
National Center for Supercomputing Applications

605 E. Springfield Ave.
Champaign, Illinois 61820 USA

ABSTRACT: At the National Center for Supercomputing Applications (NCSA), we found that
thread-parallel, gang-scheduled Origin 2000 jobs consumed more than 5 times as much CPU
time when the load average on a system is high (96 on a 64-processor system). We worked
with Silicon Graphics (SGI) as they made changes in the IRIX process scheduler to fix the
problem. We will discuss improvements to the scheduler and the general problem of
scheduling parallel jobs when processors are over-allocated. NCSA’s Load Limiter ensures
that the load average does not exceed the number of processors. Parallel jobs now have much
more consistent performance.

Introduction

NCSA SGI Origin Production Environment
NCSA’s production environment includes 9 SGI Origin

systems with a total of 512 processors and 160 Gbytes of
memory. A 32 processor Origin is available for interactive
use. The remaining 8 systems are reserved for batch use.
NCSA uses lsbatch, part of the Load Sharing Facility (LSF)
from Platform Computing Corporation as its batch system.
There are about 26 batch queues, categorized by resource
requirements (memory and CPU), user type (academic or
Industrial), and type of queue (time-shared, debug, or
dedicated). Since it is a national center, NCSA has thousands
of users that are geographically dispersed throughout the U.S.
and the world. Our users represent a large variety of
disciplines, types of codes, and programming models.

The problem
In the summer of 1997, users reported widely varying

CPU times for the same job on NCSA’s Origin systems.
NCSA requires users to put CPU limits on their jobs. When
the CPU limit is exceeded, the job is killed. Some users
reported that the same job ran fine sometimes and other times
it was killed because it exceeded CPU limits. Other users
reported that a job would use 10 CPU hours on one run and 40
hours on the next. The wall clock time of each job was
proportional to the CPU time, so it was difficult to predict
when a job would finish. This was making a big impact on
user productivity and satisfaction.

The Testing Process

The Maxwell code
NCSA obtained a code that demonstrated the problem

particularly well. According to the user, the maxwell code
“performs a time-domain simulation of Maxwell’s equations in
a dielectric on a rectangular grid.” It was compiled with
version 7.1 of the Fortran 90 compiler and parallelized with
the –pfa option. Thus, the code uses an MP thread-parallel
programming model. The observed performance was good in
a dedicated environment when the load average was low. The
user reported that the code typically ran in 20 CPU hours, but
occasionally took over 50 hours.

Testing Process
We obtained the maxwell code from the user and ran it in

a series of tests on a dedicated 64-processor Origin system
running IRIX 6.4. We ran one to six copies of identical 16-
processor jobs, varying the system load average from 16 to 96.
All the jobs had gang scheduling enabled. With gang
scheduling, all threads are scheduled on processors at the same
time so the threads are synchronized with each other. We
computed the average CPU and wall clock time for all the jobs
in each run.

Results

Initial Results
Figure 1 shows the results of the test. We show the

average CPU seconds per job, observed and ideal. In the ideal
case, we naïvely assume the average CPU time for each job

CUG 1998 Spring Proceedings 2

will stay the same, regardless of the system load average.
Figure 1 shows that the average CPU time grows exponentially
when the number of active threads exceeds the number
processors.

Figure 1. Average CPU seconds per job for one to six
copies of thread-parallel gang-scheduled jobs.

Figure 2 shows the wall clock (REAL) time for the same
jobs that were shown in Figure 1. In estimating the ideal time,
we expect the wall clock time to increase when the number of
active threads exceeds the number of processors since the
threads have to share processors. As a simplifying assumption,
we ignore cache effects that occur when a thread is moved
from processor to processor. As with the CPU time, the
average wall clock time grows exponentially when the number
of active threads exceeds the number processors.

Figure 2. Average wall clock (REAL) seconds per job for
one to six copies of thread-parallel gang-scheduled jobs.

Observations
Using perfex, we observed the inefficient use of cache

when there are more threads than processors. The movement
of threads from processor to processor can explain this effect.
The observed degradation in performance due to cache misses
is on the order of 15% to 20% on 96 active threads. It cannot
explain the large exponential effect in figures 1 and 2.

Using ssrun, we observed that the threads were spending a
lot of time in barriers when there were more threads than
processors. This was unexpected behavior and it led us to
believe there might be a problem with gang scheduling in the
IRIX 6.4 scheduler.

SGI Response
We shared our results and observations with our on-site

SGI applications engineer, K.V. Rao, who gave our results and
the maxwell code to SGI engineers in the Resource
Management Group. They made changes to the IRIX 6.4
scheduler, while NCSA served as a beta site. These changes
were included in patch 2536, which became available in
January 1998. It is now included in patch 2890.

The patch ensures that two threads in the same gang will
never be scheduled onto the same processor.

Here is the analysis of the problem from the SGI engineer.
The maxwell code had poor memory placement. Rather than
distributing the memory across various nodes, all the memory
was in one node. The scheduler tries to schedule threads on
processors close to where the memory is. So the scheduler was
putting multiple threads on the same processor. You can
imagine that at times, one of the threads was waiting on a
barrier for the other thread, while both were competing for the
same processor.

While the programmer could have addressed the memory
distribution problem, it is clear that the scheduler should not be
placing two threads in the same gang on the same processor.

This is a great example of a customer and vendor working
together to solve a problem. Our users are satisfied and SGI
has a better product as a result.

Results after Patch 2536 was installed
Figure 3 shows the results of the test after patch 2536 was

installed. The scheduler is doing a much better job scheduling
the threads of the gang-scheduled process.

Figure 3. Average CPU seconds per job for one to six
copies of thread-parallel gang-scheduled jobs after patch
2536 was installed.

0

500

1000

1500

2000

2500

3000

16 32 48 64 80 96

Number of Active Threads
(on a 64-processor system)

A
ve

ra
g

e
R

E
A

L
 S

ec
o

n
d

s
P

er
 J

o
b

Real seconds

Ideal Real
(ignoring cache effects)

0

5000

10000

15000

20000

25000

30000

35000

16 32 48 64 80 96

Number of Active Threads
(on a 64-processor system)

A
ve

ra
g

e
C

P
U

 S
ec

o
n

d
s

P
er

 J
o

b

CPU seconds
Ideal CPU

0

5000

10000

15000

20000

25000

30000

16 32 48 64 80 96

Number of Active Threads
(on a 64-processor system)

A
ve

ra
g

e
C

P
U

 S
ec

o
n

d
s

P
er

 J
o

b

No patch
patch 2536
Ideal CPU

CUG 1998 Spring Proceedings 3

Figure 4 shows the wall clock time for the same job mix.
It shows a comparable improvement in wall clock time.

Figure 4. Average wall clock (REAL) seconds per job for
one to six copies of thread-parallel gang-scheduled jobs
after patch 2536 was installed.

Environment Variables
SGI suggested we try experimenting with various

environment variables to modify the way the scheduler works.
We tried various values of the following variables:

• $MPC_GANG • $MP_BLOCKTIME
• $MP_SUGNUMTHD • $_DSM_MUSTRUN
• $MP_SCHEDTYPE • nodemask

Only two had any significant effect. $MPC_GANG turns
gang scheduling on and off. With gang scheduling, all threads
are scheduled on processors at the same time so the threads are
synchronized with each other. Gang scheduling is on by
default under IRIX 6.4, and it is critical for good performance
with MP thread-parallel codes when dynamic threads are not
used.

Dynamic Threads
The variable $MPC_SUGNUMTHD enables dynamic

threads. As the program runs, an asynchronous process
monitors the system load. Each time the program enters a
parallel region, the number of threads is adjusted based on the
load average. If the system load is high, it decreases the
number of threads. If it is low, it increases the number of
threads.

When dynamic threads are enabled, the number of active
threads is always less than or equal to the number of
processors. For example, when 6 jobs are running, they are
only using about 11 threads each on a 64-processor system.

Dynamic threads make a big difference in performance,
because it makes the scheduler’s job easy. The scheduler can
put a thread on a processor and leave it there. Figures 5 and 6
show that when all the jobs use dynamic threads, the system
load average is controlled, and thus the scheduler can
efficiently place threads onto processors without contention.
The performance of the jobs with dynamic threads is very

close to ideal performance, regardless of whether gang
scheduling is used.

With the patch, there is a small increase in wall clock time
when gang scheduling is used. If dynamic threads are used,
gang scheduling should be turned off to achieve the best
performance.

Figure 5. Average CPU seconds per job for one to six
copies of thread-parallel jobs with dynamic threads
enabled.

Figure 6. Average wall clock (REAL) seconds per job
for one to six copies of thread-parallel jobs with dynamic
threads enabled.

If all jobs were MP parallel and all used dynamic threads,
you would achieve the best system throughput. Unfortunately,
the use of dynamic threads cannot be enforced. In a mixed
environment, those users that use dynamic threads will pay the
price in slower turnaround time.

Dynamic threads are not useful for benchmarking,
because they produce unpredictable wall clock times (due to
the variable number of threads). Dynamic threads are not
available for programming models other than thread-parallel.

Dynamic threads will be on by default under IRIX 6.5,
with gang scheduling off. This provides the best system
throughput. If dynamic threads are turned off, gang scheduling

0

5000

10000

15000

20000

25000

30000

16 32 48 64 80 96

Maximum Number of Threads
(on a 64-processor system)

A
ve

ra
g

e
C

P
U

 S
ec

o
n

d
s

P
er

 J
o

b

patch 2536, gang on

patch 2536, gang off

No patch, gang on

Ideal CPU

0

500

1000

1500

2000

2500

16 32 48 64 80 96

Number of Active Threads
(on a 64-processor system)

A
ve

ra
g

e
R

E
A

L
 S

ec
o

n
d

s
P

er
 J

o
b

No patch

patch 2536

Ideal Real
(cache effects ignored)

0

500

1000

1500

2000

2500

16 32 48 64 80 96

Maximum Number of Threads
(on a 64-processor system)

A
ve

ra
g

e
R

E
A

L
 S

ec
o

n
d

s
P

er
 J

o
b

patch 2536, gang on

patch 2536, gang off

No patch, gang on

Ideal Real
(cache effects ignored)

CUG 1998 Spring Proceedings 4

is automatically turned on. This provides the next best system
throughput on a heavily loaded system.

General Problem

The patch solves the problem of CPU and wall clock
performance on MP thread-parallel jobs when gang scheduling
is used. Unfortunately, NCSA’s actual job mix is more
complex. We have a mixture of programming models: MP,
HPF, SHMEM, POSIX threads, MPI, and PVM.

When running MPI jobs, for example, we have seen
problems similar to what we saw with the maxwell code
before the patch was installed. The reason is that the scheduler
does not know that the MPI processes are part of the same job.
So it cannot help scheduling multiple MPI processes onto the
same processor.

The only way to generally solve the problem is to control
the system load average to make the scheduler’s work easier.
Dynamic threads do that, but only for MP thread-parallel jobs.

NCSA’s Solution

NCSA Load Limiter and Job Process Monitor
NCSA extended the LSF batch system by creating the

Load Limiter and Job Process Monitor, which were written by
Michael Shapiro (mshapiro@ncsa.uiuc.edu).

The basic idea of the Load Limiter is to require users to
specify the resources (number of processors, memory, and
CPU time) that their job will use. The Load Limiter ensures
that jobs are scheduled only when the resources required are
available. The Job Process Monitor ensures that jobs do not
exceeded their stated requirements as well as reporting the
actually resource usage for the job. If the job exceeds its
declared requirements, it is killed.

NCSA’s Load Limiter uses LSF’s resource manager. Each
host system has a pool of processors. When a job is started,
the number of available processors is reduced by that amount.
A new job will not be started on a host unless there are enough
processors available in its pool. Memory works in a similar
way. One queue may span several host systems. When a new
job is submitted, LSF selects a host that has enough processors
and memory.

With the combined effect of the IRIX patch and the Load
Limiter, our users have been seeing much more consistent
CPU and wall clock times.

There is a description of NCSA’s batch system at
http://www.ncsa.uiuc.edu/SCD/Hardware/Origin2000/Doc/Jobs.html.

Issues with NCSA’s Solution
There was a problem where jobs that require a lot of

processors wait forever because there is a constant stream of
jobs that require few processors. To solve this problem, some
hosts systems are designated "large job" systems. If there are
any large jobs in the queue, those systems will not start any
smaller jobs.

One problem with the Load Limiter is that it requires
users to specify new limits on every job. If the limit is too
low, the job is killed. But if the limit is too high, system

resources go idle. We want the user limits to be as close to the
high water mark as possible.

There is also the issue that the actual use of resources
(both memory and number of processors) may vary over the
lifetime of a job. For example, a benchmarking job may use 1,
2, 4, 8, 16, 32, and 64 processors. The user must set the limit
to 64, even though most of the time the job does not need that
many processors.

The Job Process Monitor reports the high water marks for
memory and the number of processors after a job has finished,
so users running production jobs should be able to give very
accurate limits.

To increase system utilization, we want the scheduler to
be able to handle some over-allocation of processors and
memory without causing system throughput problems. This is
certainly possible now when all the jobs are MP parallel and
either dynamic threads or gang scheduling is used, but NCSA’s
job mix is more complex.

Future Plans

Message Passing Jobs
We would like to evaluate MPI jobs and even a

heterogeneous job mix, such as MPI and MP parallel jobs. At
this time, the scheduler has no knowledge that multiple
processes of an MPI or PVM job are part of the same job.
Thus, we expect that the performance of MPI and PVM jobs
will be poor whenever the system load average is high. We
think it would be useful to have an equivalent to gang
scheduling and dynamic threads for other programming
models, such as MPI.

IRIX 6.5 Scheduler
We would like to evaluate the job mix under the IRIX 6.5

scheduler. Engineers in SGI’s Resource Management Group
have told us that it is much improved over IRIX 6.4.

Miser
Miser is a resource management facility with a batch

process-scheduling component that will be included with IRIX
6.5. Miser allows the system administrator to allocate physical
processors and memory to a job, achieving close to dedicated
performance. Miser provides kernel support for limiting the
load average of a system. We are exploring how Miser will
help us control the load average of NCSA’s Origin systems.

Miser's usefulness to NCSA really depends on how it is
integrated into LSF. It's not useful to us as a stand-alone
system. NCSA is talking with Platform Computing and SGI to
give feedback on how we think Miser should be integrated into
LSF. We expect that Miser will be integrated into LSF later
this year.

Conclusion

It is extremely important to control the system load
average to run parallel jobs efficiently on Origin systems.

CUG 1998 Spring Proceedings 5

If all parallel jobs use the MP programming model, then
it’s best for all jobs to use dynamic threads. The next best
alternative is for all jobs to use gang scheduling.

NCSA will continue to use the Load Limiter for the
immediate future, and we are planning to incorporate Miser
into our batch system after it has been integrated into LSF.

Acknowledgements

K.V. Rao, R. Ananthanarayanan, and Nawaf Bitar of
Silicon Graphics have been extremely helpful in this project.
The author wishes to thank Michael Shapiro, Faisal Saied, and
Rick Kufrin for their assistance with this paper.

About the Author

Dave McWilliams (davem@ncsa.uiuc.edu) is a member
of the Performance Engineering and Computational Methods
group at the National Center for Supercomputing Applications
(NCSA) at the University of Illinois.

