

Application Program Interface

Ramesh Menon

menon@sgi.com

Strategic Software Organization Silicon Graphics, Inc.

Outline

- Motivation for the OpenMP initiative
- Overview of OpenMP
- OpenMP Organization
- Salient features of the API
- Silicon Graphics OpenMP Products
- Future Directions

Motivation

- No portable standard for shared memory parallelism
 - * Each SMP vendor has proprietary API
 - **** X3H5 and PCF efforts failed**
- Portability only through MPI
- Parallel application availability
 - *** ISVs** have big investment in *existing* code
 - New parallel languages require major investment

OpenMP Overview

- Shared memory multiprocessing API
 - Similar to MIPSPro "libmp": Directives, library routines
 - Constructs for enabling scalability
- Portable standard: Unix and NT

₩ SGI

Intel

₩ DEC

₩ IBM

₩ HP

₩ Sun

**** Sequent**

*** ASCI**

**** Kuck & Associates**

**** Portland Group**

*** NAG**

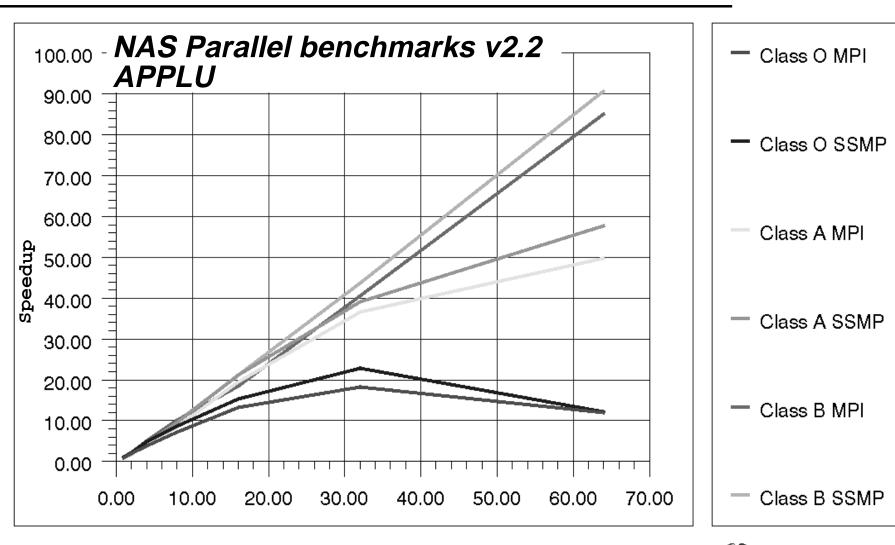
₩ EPC

***** ABSOFT

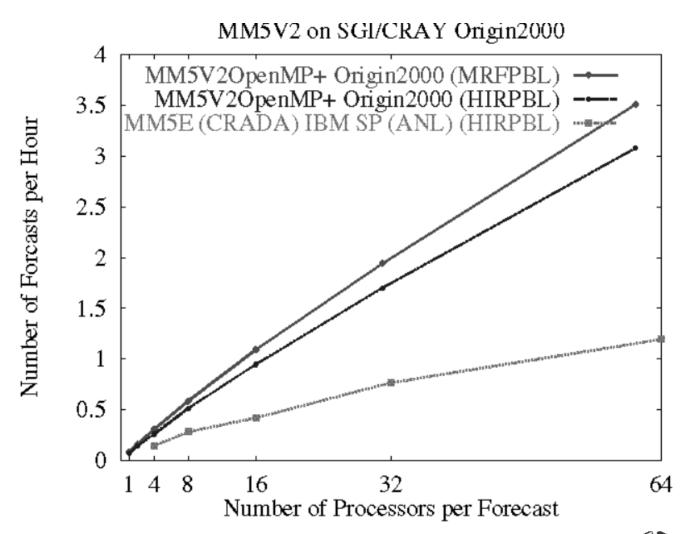
Several Application Software Vendors

OpenMP Organization

- OpenMP Architecture Review Board (OARB): governing body
- Led by SGI: current Chair of OARB
- Incorporation in progress
 - ** vendor neutral non-profit: www.openmp.org
- Fortran v1.0 Specification: October '97
- C/C++ v1.0 Specification: August '98
- Validation Suite for Fortran
- Supercomputing '98


Salient Features of the API

- Fine and Coarse Grain Parallelism
 - ** Loop level parallelism with standard directives
 - Scalable algorithms without message passing
 - **Standardize existing practice, reduce time to market**
- Allow incremental parallelization
- Provide access to strengths of shared memory
 - Exploit cache-coherent scalable hardware


Scalability on Origin2000

MM5 on Origin2000

Scalability in shared memory

- Scalability is a function of the unit of work
 - # Fine grain limited scalability
 - ** Coarse grain better scalability
- Algorithms & data structures determine scalability ... not the programming paradigm
- Shared memory parallelism does not imply loop level parallel
- Enabling scalability: SPMD parallel regions with orphanable directives

Parallel Regions

```
program main
!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP BARRIER
     call work(...)
!$OMP ATOMIC
       X(L(i)) = X(L(i)) + tmp
     enddo
!$OMP END PARALLEL
     end
```


Orphaning of Directives

```
file1.f
                                                          file2.f
                                                 subroutine work(...)
     program main
                                           !$OMP DO
!$OMP PARALLEL DEFAULT(PRIVATE)
                                                 do i=1,N
                                           !$OMP ATOMIC
      call work(...)
                                                   X(L(i)) = X(L(i)) + tmp
                                                 enddo
!$OMP BARRIER
                                           !SOMP BARRIER
!$OMP END PARALLEL
                                                 return
      end
                                                 end
```

Orphaned directives

Functionality

- Barriers
- Critical Sections
- Flush Synchronization
 - * roll your own point to point synchronization
- Master Sections
- Single Sections
- Threadprivate: Taskcommon
- Default Variable Scoping

Irix Platform Products

- MIPSPro 7.2.1 Fortran compilers
 - ** Performance focused implementation: scaling to large number of processors
 - ** Complete implementation + SGI extensions
- Workshop ProMPF tools to assist in parallelization
 - * Trouble shoot performance problems with OpenMP aware tools

SGI's OpenMP Extensions

- Performance extensions only
- Complete support for NUMA directives
 - # c\$sgi distribute and variations
- Continue usage of non–MP directives
 - # c*\$* {fill,align}_symbol and variations
- Extensions for scaling

Interoperability

OpenMP can be intermixed with:

- **** MPI and PVM to enable Hierarchical models**
- ** Automatic Parallelization (-pfa)
- **** Libmp: doacross and PCF directives**
- # Autotasking directives (-cray_mp)
- ** shmem and pthreads NOT supported in this version

Precedence:

- *** Mixed in same PU**
- * Last directive binding

Future of OpenMP

- C/C++ specification:
- Validation suite
- C/C++ compilers: MIPSPro 7.3
- Extend specifications
 - # Fortran 90/95 Issues
 - * Memory consistency model
 - ** Parallel I/O issues
 - **Standardize NUMA directive, templates**

Further Reading

- "OpenMP: An Industry–Standard API for Shared–Memory Programming", Leo Dagum and Ramesh Menon, *IEEE Computational Science & Engineering*, January–March 1998, Volume 5, Number 1, pp. 46–55.
- http://www.sgi.com/Technology/OpenMP
- http://www.openmp.org

