
1

Monitoring and Automatic
Reboot of Cray GigaRing

Systems

Birgit Naun (b.naun@fz-juelich.de)
Thomas Plaga (th.plaga@fz-juelich.de)

Zentralinstitut fuer Angewandte Mathematik
Forschungszentrum Juelich GmbH, Germany

Ralph Krotz (rkr@cray.com)
SiliconGraphics GmbH, Germany

In the operatorless environment of a modern
computer center the automatic reboot of failed
production systems is an urgent requirement.
This paper describes the distributed
monitoring mechanism on the Cray
mainframes, the corresponding system
workstations (SWS) and the computer
center’s problem management database server
developed at Forschungszentrum Juelich. If
this monitor detects a malfunction (could be
any hardware or software problem) a set of
utilities implemented on the SWS gathers as
much information as possible for later
problem analysis, reboots the failing
component or the complete system if
required, sends out email messages and
communicates status changes to the central
database.
The automatic rebooting mechanism is
designed to run on top of the SGI/Cray
supplied basic system operation commands
and supports all GigaRing based Cray
systems (including T3E, T90 and J90se) and
can be adapted easily to local information
handling requirements.

1. The Idea

The basic idea leading to the development of the
monitoring utilities was: let the SWS do all the routine
work that had to be done by human operators
previously and take advantage of the fact that the
workstation never sleeps !

Essentially this boils down to the following
requirements:
- continuously monitor all mainframes
- take corrective action if a problem should occur
- log actions and observations
- send information about all actions to a list of people
who are responsible for proper functionality of all
systems

- send information about significent state changes to a
central monitoring system (or database) - the one that
is examined by the computer center’s management.

The joint project dates back to the first Cray system at
Forschungszentrum Juelich (at that time known as
KFA) equipped with a workstation to boot the system -
a YMP installed in 1989. At CUG 1991 a first
presentation of a preliminary version of the autoboot
feature was given.

Fig. 1 gives a simplified overview of the current Cray
Supercomputer Complex at Forschungszentrum
Juelich.

Fig. 1

2. Implementation Guidelines and
Requirements

To simplify the implementation and to avoid
unnecessary complications we adhered to the
following guidelines:

1. Use existing commands and utilities if possible:
All scripts for basic system operations are based on
the system-level commands like bootsys,
dumpsys, haltsys; the scripts are Korn shell (ksh)
scripts or expect scripts. ksh is the default shell of

2

the SWS Solaris operating system; expect is a Tcl-
based toolkit for automating interactive programs
and part of the SWS-ION package, mainly used for
installs and upgrades. The SWS-ION supplied
watchlog utility is used for triggering on special
events or messages.
The SWS-ION Administration and Operations
Guide SG-2204 gives detailed descriptions about
the officially available commands.

2. Avoid vulnerability by strong dependence on a
specific SWS-ION release level:
The scripts should be as independent as possible
from the SWS-ION release; otherwise every new
release would require extensive rework. This was
achieved by using the system-level commands
dumpsys and haltsys as well as the option and
topology files. Actually the scripts use the low-level
commands like dring, bootion or boott3e. To
ascertain the correct options for these commands
the top-level commands dumpsys and haltsys are
executed on every manual boot using the ‘-S’
option to generate the proper low-level commands.

3. Compatibility to all existing mainframe platforms
J90, T90 and T3E:
Although there are some special requirements for
each platform (some examples: a PVP panic
requires the reboot of the complete system in any
case whereas a panicked PE of the T3E may be
warmbooted without affecting the whole system;
the T90 features ‘hung CPU’ detection and may
require an SCE reset), the basic mechanism for all
system operations is the same; only a few special
events need platform specific actions.

4. Easy adaption to local requirements:
This is very important to minimize changes to the
scripts in case of requirement changes, e.g. a
change of the central information system. It also
helps when new machines have to be added and is
a prerequisite for adapting the scripts to new sites.

5. Modular design:
If changes are required, e.g. new actions have to be
integrated or an error has to be corrected, in most
cases testing of the changed module is sufficient. A
central problem here is that testing of the complete
autoboot process can take a huge amount of
dedicated (!) system time. Testing of all
combinations of system problems is not reasonable
at all because of the complexity and the fact that
some hardware failures are not easily triggerable
without extensive preparation (if at all !).
Consequently adaption or correction is needed if a
formerly unknown problem occurs and autoboot
fails to handle it properly. Modular design also
helps with requirement no. 3 in terms of
compatibility: if a new error condition is observed
on one platform, the modified scripts need to be

tested on one system only to make sure the same
problem is handled properly on other platforms
later on.

6. No interference with human operating actions:
Two new top-level commands were developed for
basic system operations - runcray and stopcray
(the names are intended to be self-explanatory) -
using the same communication mechanism as the
autoboot scripts. In fact autoboot uses these two
commands, inside the commands manual or
automatic mode is determined. Additionally, there
is one simple command to switch autoboot on/off.
If switched off, there is no problem to use the
“official” top-level commands - but in that case
less logging and notification is performed.
However, usage of the new commands runcray and
stopcray is strongly recommend.

7. Simple error analysis:
All status changes require appropriate logging. If a
system problem occurs or the autoboot mechanism
fails a quick look through one logfile should make
a first analysis possible.

8. Clear packaging:
This is an important requirement not only for easy
installation at a new site but also for simplifying
upgrades, i.e. upgrades of the SWS-ION package
as well as upgrades of the scripts itself. An
additional problem results from the fact that the
autoboot scripts represent a distributed application:
the master is running on the SWS but is
communicating with the mainframe in two
directions - the mainframe provides a regular
“heartbeat” e.g. every five minutes and responds to
sanity checks requested by the master if something
seems to be wrong. The current autoboot version is
installed by unpacking one tar file on the SWS and
copying some files to specific locations. It has been
demonstrated that SWS-ION upgrades usually
don’t require more additional work than re-
installing the autoboot script supplied watchlog
setup.

3. Description of Components

The basic components are the following scripts on the
system workstation (SWS):

cron/check_status
driven by cron this master script checks the
content of the central status file
(/opt/log/auto/cray_status) every minute and
schedules one of the following action scripts
accordingly.
The “cray_status” file synchronizes all
components and acts as the main trigger for

3

autoboot. During normal production
conditions the status file contains the string
“RUNNING” and is touched from the
mainframe every five minutes.

runcray
boots the Cray system, does the same as
bootsys plus:
on a manual boot it derives the sequence of
low-level boot and dump commands by
analyzing bootsys -S and dumpsys -S
output to make sure the correct topology and
options are used. It writes a log entry when
the mainframe is in single user mode, issues
“init 2” on the mainframe, answers
subsequent questions from /etc/rc* and
ensures the mainframe console is logging to
an SWS-based logfile. After successful
completion the status file contains
“RUNNING”.

stopcray
stops the Cray system in the following way:
logs in to the mainframe with uid “operator”,
issues /etc/shutdown, halts the mainframe
when shutdown is completed, takes dumps of
all components if shutdown didn’t complete
cleanly, logs shutdown completion time or
dump location.
If stopcray is called manually by an operator
the status file will contain “DOWN_PM”
afterwards, i.e. monitoring is essentially
switched off. If called automatically, i.e.
status “CRASH”, stopcray invokes runcray
to complete the autoboot.

verify_run
verifies proper operation of all system
components:
runs checkion on all IONs, runs checkxxx
(xxx = t3e, j90 or t90) to detect hanging
CPUs (T90 only) and system panics. If the
response to the check commands indicates a
failing component, verify_run invokes
sanity_check to determine if the mainframe
is in trouble and needs to be rebooted. If an
ION is down a reboot of that ION is done.
Additionally on T3E single panicked PEs are
dumped and warmbooted - panicked PEs are
detected by the watchlog utility. After a
warmboot another sanity_check is started to
make sure the mainframe continues to run
properly.
Finally verify_run checks for mainframe
hangs by analyzing the age of the status file
(should not be older than five minutes): after
a first timeout is encountered (usually 15
minutes) sanity_check is started but no
further action is taken until the second
timeout is reached (30 minutes, all time

values are locally definable). After a final
unsuccessful sanity_check the system is
flagged down by writing “CRASH” to the
status file.

sanity_check
tries to run a site-specific sanity check script
on the mainframe via remote shell over all
available network interfaces - any other
returned string than “OK” indicates a major
system malfunction.

The following components run on the mainframe:

signal_sws_cray_is_alive
touches the “cray_status” file on the SWS
every five minutes.

sanity
checks for proper operation of cron,
availability of all file systems relevant for
production and the mininum required number
of application PE’s (T3E special).
This script is invoked via remsh from SWS
based sanity_check.

The SWS-ION supplied watchlog utility is set up to
monitor the log files in directory /opt/log including the
mainframe console log file for specific patterns like
“Panic”, “PE halted”, etc. If one of those patterns is
encountered appropriate flags are set which are
recognized and acted on by verify_run. In any case
watchlog sends informative email.

If an autoboot condition is detected (i.e. verify_run
detected a hung or sick system or that a panic occurred
on a PVP system), stopcray is issued as a last resort.
In case of a false alarm nothing more than an orderly
system shutdown and subsequent reboot would
happen. If the system is really dead, dumps will be
taken from all system components including GigaRing
status information to allow complete analysis of the
problem. Finally runcray is called to reboot the
mainframe.

For easy local adaption the following user exits are
supported:

common_vars.site
includes all local variables like system names,
mail recipients and timeout values.

runcray.pre.site, runcray.pst.site, stopcray.pre.site
take care of special requirements at system
start and stop.
Example: if bringing down the fileserver, stop
the NQS queues on the affected mainframes.

info.site
contains the local communication interface
(see below, “Communication and Logging”).

4

All scripts feature timeouts to prevent hang situations.
The basic scripts are Korn shell scripts for easy
debugging and maintaining. The expect language is
needed for those operations which usually require
interactive dialogs - like the Unicos rc scripts or
commands like fsck which may ask some questions
and wait for an answer. The expect scripts need some
tuning for local specials like the mainframe’s shell
prompt and specific questions from /etc/rc*.

A complete overview of all components and their
interaction is illustrated in Fig. 2. The arrows show
the read or written status strings.

Fig. 2

4. Communication and Logging

Two levels of communication are implemented:

a) All actions performed by the basic scripts are logged
using syslogd. They also generate email messages to
site definable addresses. This mechanism ensures that
all persons in charge of the computer systems are
informed about the current status or potential
problems. Fig. 3 shows a typical example of the
received email messages at an administrator’s

workstation after an autoboot showing the sequence of
events at a glance. The email message bodies contain
further information like panic messages and
checkxxx output.

Fig. 3

 A more detailed analysis is made possible by simply
extracting the log entries written by the autoboot
components. For this purpose the command qlog is
provided. Fig. 4 shows the corresponding qlog output.

Fig. 4

b) Additionally, on important status changes like
system up or down the site specific script info.site is
called to meet the customer’s need for keeping track of
those changes and to incorporate special messaging
methods.
At Forschungszentrum Juelich there is a locally
developed tool called “Computer Center Management
System” acting as the central information system for
administrators and computer center management. This
tool keeps track of the availability of all computer
systems and is intended to give a fast overview of
system events which occured during operatorless times
like nights, weekends and holidays. Those events
include successful or unsuccessful reboots, warmboots,
loss of connections, downed CPUs or PEs. The
Computer Center Management System gets its input
via socket communication from all connected systems.
In the case of the Cray systems this is done with a Tcl
script running on the SWS. It also triggers phone calls
to the operator on duty if manual intervention is
required, e.g. if autoboot fails to reboot the system.
Fig. 5 shows a typical display of the main window
with the overview of system availability. In this
example the T90 was autobooted and related
information is available by just clicking on the symbol
- see Fig. 6.

5

Fig. 5

Fig. 6

For a complete analysis of the system problem further
inspection of log file ion_syslog.info is sufficient in
most cases. Additionally a look at the mainframe
console messages is helpful - this is made easy by
establishing a mainframe console log file on the SWS
in the default log directory /opt/log. Last but not least
the command echo generated during an autoboot is
written to file /opt/log/auto/AutoLogOUT.

5. Experience and Outlook

Since the early days of this project the autoboot and
monitoring scripts have been revised and enhanced
several times to implement new features, to add more
robustness and to minimize the need for special
requirements on the mainframe. The last major change
included the support of GigaRing based systems.

The autoboot feature has been successful in many
cases. The statistics at Forschungszentrum Juelich
show that during the last year (June 1997 to June
1998) 48 successful autoboots occured on all five Cray
mainframes during operatorless hours adding up to a
total of 772 hours of saved time. Without autoboot
this time would have been wasted if no operator did
come in at night or weekend to boot the system before
the next working day, i.e. the autoboot feature is not
only very important for the computer center but
needed desperately in terms of production time.

However, the focus has shifted somewhat from
basically acting upon system panics to handling
system hang situations, early recognition of possible
problem situations and to do preventive action.
Warmbooting single PEs on the T3E is a good
example.

The directions of improvements are likely to be
continued in the future.The ultimate goal would be to
integrate this functionality into the officially supported
SWS-ION administrative commands.

