Pushing/Dragging Users Towards Better Utilisation.

Guy Robinson.

Arctic Region Supercomputing Centre, Fairbanks, ALASKA, USA.

Overview

Short Introduction to ARSC.

* Mission, Resources, Projects.

♦ Improve Users.

* Code development, tools,

* Training,

✤ Support and Assistance.

♦ Improve System.

* Make it easier for users to be productive.

Changing system and users.

Mission

To support computational research in science and engineering — with emphasis on high latitudes and the Arctic

http://www.arsc.edu/

To Facilitate that Mission...

ARSC provides:

* Hardware

+ Large Memory Vector and MPP Computing Resources

Visualization Resources

* Software

+ Various Packages for Various Platforms

* People

+ Specialists in HPC for Technical Support

+ User Training

Monitoring Users. ♦ NQS usage. * actual jobs in terms of number of processors and runtimes. ♦ grmview. * memory usage. + 'try to fill processors memory', but still allow small memories/ large processor numbers. Ensuring our big users get results. Solution with the second se

High Resolution Weather Forecasting

Jeff Tilley, Geophysical Institute
University of Alaska Fairbanks

Code development.

higher levels of performance.

hpm monitor on parallel vector systems. *impact of multiprocessor usage.*user applied tools on MPP. *PAT, Apprentice, VAMPIR etc. streams on/streams off comparison. set a goal of 100/200/300Mflops.*algorithm must be parallel, perform(scale) and be portable.

VAMPIR tool example.

1.50 S.30 S.30 S.40 S.40 S.40 S.40 S.40 S.40 S.40 S.4											94	5.94	nay_s0.kps: 42sha	15,04	11.3	1
mode 0	Seec., code	ME12_E44.4	desc., code	WTL.Book	Tres_Table	PT_APT		U ,		mode 0	Reed, code	Beer, Dode	Mees Loods	Cher_Code	an art_tere	172 172 172
mode 1	WILLING CO.	Desc, rode	WT1_040 C140	Reec., pod a	BP1_Berrier					mode 1	WILLING CONC.	Peter Jooda	weer_tebe	Read Lines	Beer_Dode	-
Bods 2	W1_Dected	Deer_Deda	W3_Berrier	Reec_bode	MP C_BATTLAC	í i		÷		Bods 2	WILDARCHE	Prec, bode	teer_tete	****_****	Rear_bode	
Boda 3	Wighteriae	Baar_Gada	MP3_Barrier	desc_dods	SPC_Barrier	É .		7 A		Hoda 3	Wighterie	asar dada	bar_tak	Fast_fast	Base_Bada	
Bada A	Willbarrian.	Gane Cada	MP1_Barrier	daar_Goda	MPC_Rector	i i				made 4	Willbarrian.	1	Taar_Sala	Sear Sugar	dear_Gada	
Beda 5	WillBarrian	Dear Code	MP1_Barrier	Sear Sale	SPE_Servior	Ĺ	12			Made 1	W1_Barrian	1 and 1 and 1	Case_Cada	Case_Case	fair_Cola	
Reds 6	W1_Barrier	Dane Cade	MP1_Barrier	daar_Coda	SPE_Barrier					Reds 6	W1_Barrier	and Sector	Duar_Cada	Fast_Cale	fare_Cola	
Bade 7	W1_Darrier	Dane Cade	W1_Barrier	Base_Code	BPE_Barrier	i				Hode T	Wighter inc	Bang Code	Dane_Cade	Over_Code	Case_Laits	
Bade 6	William Law	Dese Code	W1_Review	Base_Code	BFE_Deceive	L I	ſ			Reds 1	W1_Rector	Bank Code	Base_Code	dane_Code	Dana_Cade	
Beds 2	William ter	Dess Code	W1_Review	Rese, Code	BFC_Decoine	ŧ –			1	Bode 2	William im	Bank Code	Deer_Code	Fase_Code	Same_Code	
Bods 1	W1_Decise	Desc,Code	W1_Bareles	Rees, Code	BFC_Deceiver	Ú .				Bods 18	W1,Deceime	Beng Code	Dess_Code	Fass_Labe	Same_Code	
Body 1	WT 2_PACE LAG	Desc.,Code	WT_BALLAS	Rees, Code	BFC_Decolec	Ľ .				mode 11	WT, Decelor	Barry Code	Dess.,Code	Desr_Code	Cont_Code	
mode 1	WELFALL HALF	Desc, Dede	W72_P401140	Rescupped a	SPL_Decriec	Ľ .				mode 12	MELENCOLO:	Beer Loods	Dist_Date	*****	Read Liberty	
mode 1	WT_PACTOC	teer code	W71_0400140	Reec_code	SPL_Secried	Ú.				mode 13	WILLING CLOC	seer_code	Deer_peda	teer_telle	Tang_Telle	
Bods 1	WILDARTING.	deer_bede	0073_0407140	Reec_bode	MPE_Barrier	Ú.				Beds 14	WILMORTH:	seer_bode	Deer_Deda	Desr_take	tear_take	
Body 1	Wijharriar	Manr_Soda	MP1_baretar	dear_Boda	SPE_Servier	Ĺ.				Bods 15	Wijherter	datar_Goda	Seer_Dode	dear_Oaks	Deer_fode	
1										-						

- VAMPIR allows users to inspect message passing.
 - * Considerable detail and information available.
 - Easy to identify areas for improvement in algorithm. Great help when fine tuning across different architectures/problem sizes etc.
 - * Also VERY useful for training and explaining to others how code works.

Improvements in the longer term.

Changes to code.

* don't fix the number of processors! Setter, real parallel algorithms. \Rightarrow algorithms for the size of problem the user wishes to solve. ◆ Leading by example. If forward success stories to the userbase. + sudden increases in problem size/complexity brings new needs.

DoD Grand Challenge Project

Unsteady Hydrodynamics of the Maneuvering Submarine

This grand challenge project has been granted 170,000 processor hours (approximately 25% of the available cycles) on the CRAY T3E for the current year.

Embarrassingly Parallel! Not a failure. Lots of productive science done this way. Does take effort. Management of files and putting answers together to review all results is key. + visualisation efforts, weather/climate and groundwater parameterisation studies. **System advantage is it can fill the system CPU resources.** + Users must be flexible in job sizes. + Taken our MPP utilization to 95%/75%/85% for first quarter of 98.

• Currently often running 4 jobs which fill system.

SAR Imagery to Measure Arctic Soil Moisture

 Doug Kane, Larry Hinzman, University of Alaska Fairbanks

System Improvements at ARSC.

Queues.

- A migration exit in NQS. Rearranges work to combine any holes in processor space and permit large jobs to run.
- Checkpointing allows big jobs at night and interactive/Quick jobs to run during the day.
- Could newer software schedulers improve matters?!

Many improvements only work if users also change.

 In particular users with flexible processor demands get a better turnaround.

People.

Specialists in:

- Parallel Vector Computing
 Massively Parallel Computing
 Visualization Systems
 HPC Consulting
- Joint Faculty Appointments with University of ALASKA
 Visiting Researchers
 Administration
- Network Systems
 Mass Storage
 Computer Security
 Cray Hardware/Software

Healy Clean Coal Project

Bill Brody,
 University of
 Alaska Fairbanks

Visualization created with AliasWavefront software. This animation shows the process of scrubbing the emission gases.

Close up of bag-house and air sprayer dryer process within the HCCP power plant.

Getting messages to users. Most of ARSC cycles are consumed by remote users. * newsletter, web pages, hardcopy publications etc. + success stories by peers are more successful than pushing computing science. + addressing a users needs is better than just telling. + newsletter is sent by email and available for reference on the web. http://www.arsc.edu/pubs/MPPnews.shtml + a few basic manuals with local information and local examples of best/preferred user practices are most productive use of centre effort, e.g. NQS, CRL etc.

User Support: www.arsc.edu On-Line: August 19, 1994 (8th UA Site) * Policies & technical documentation. ☆ Cray online manuals. Application, re-registration, software request, and other forms. + FPT (form pre-processing tool) ***** Publications. + transitions bulletin, getting users into habit of regular change and 'hopefully' self evaluation. f77 to f90, D to E, Y to J to SV1?

Future plans.

Advanced schedulers.

Only if there is a clear reward!
Can 95% be improved on for an MPP?!
Continued user education.
Real parallel codes.
Improved algorithms for problem sizes/type.
Validation, tools for inspection, portability improvements.
Closer links between computation, visualisation, storage.

Pollock Larvae

Al Hermann,
 Pacific Marine
 Environmental
 Laboratory

Conclusion.

Users can,

- Do nothing or do everything?
 - Work with a small number of tools in a simple manner.
 - Tell other users and the centre of both good and bad experiences.
 - + Be flexible.

Centres can,

- Do everything or do nothing?
 - Make a number of simple changes which greatly reinforce good user behaviour.
 - Lead users forwards by promotion/example.
 - + Be flexible.

