

Advancing with UNICOS Toward IRIX June 9, 1998 1

Advancing with UNICOS Toward IRIX

Barry Sharp
Boeing Shared Services Group - Technical Services

High Performance Computing - Engineering Operating Systems
The Boeing Company, P.O. Box 3707 MC 7J-04, Seattle, WA 98124-2207, USA

barry.sharp@boeing.com

Copyright (c) 1998, The Boeing Company, all rights reserved

Abstract

During the past eight years of running UNICOS on X-MP, Y-MP, and T90 systems numer-
ous enhancements to the kernel, System Administration and User-Level facilities have
been made. This paper outlines the rationale for these and provides descriptions on their
implementation. The intent is to share this inventory with other UNICOS member sites
and to suggest those that might be applicable to the Origin2000 IRIX system.

1.0 Introduction

Life started in 1979, which now appears to be in the murky distant past, with a Cray-1S
having just 1/4 Mwords of memory and COS 1.08. The good old days some would say.
Much was needed at this time in terms of adding value to the operating system and sup-
porting infrastructure software. By 1989 we had reached COS 1.14 on an X-MP and were
aspiring to a Y-MP8E running UNICOS 5.0. Our COS 1.14 system contained around
500,000 lines of local modifications by this time, mostly for handling connectivity issues
to other non-Cray computing platforms such as CDC and IBM machines. The Y-MP/UNI-
COS system negated the need for such local modifications and most of it was therefore
destined for the bit-bucket. However, UNICOS was not utopia by any means. The remain-
der of this paper describes how we have advanced with UNICOS toward IRIX in terms of
what we have added to support our systems since the UNICOS 5.0 days to the present day
with a T916/16512 under UNICOS 10 and an Origin2000 under IRIX 6.4.

Several of our UNICOS enhancements are, in our minds, applicable to the Origin2000
IRIX system. If your site concurs I strongly encourage you make your voice heard at CUG
and in your future discussions with SGI/Cray.

2.0 Our History

To establish our credentials a brief history of our major software projects over the span of
some 18 years is given below.

•

In 1979 we installed our first Cray machine; a CRAY-1S running under COS 1.08. The
majority of local modifications were related to connectivity to non-CRAY computers

Advancing with UNICOS Toward IRIX June 9, 1998 2

for job submission via CDC Station software and data transfers, permanent dataset
enhancements (including security such as ‘permits’), data backups, and resource
accounting.

•

Early ‘80s we upgraded to an X-MP running under COS 1.12. Major tasks while we
evolved with COS were related to porting all local modifications, collaborative effort
with Cray to extend the Permanent Dataset Management Task (DSC Extensions - DXT)
and for dealing with the first Cray delivery of a128 Megaword SSD (at the time COS
1.12 only supported a max SSD size of 64 Megawords). We developed a system-wide
Freeze/Thaw facility allowing QA testing which protected production work.

•

1986-87 Ported COS 1.13 to an SCS-40

•

1988-89 Ported UNIX V5 to an SCS-40XM; named SCENIX - a real fun project

•

1990-92 Contracted with NEC to port COSMIC NQS and UniTree to an SX-3

•

1989-1998 - Advanced with UNICOS on X-MP, Y-MP, T94 and T916

3.0 What was found missing as we advanced with UNICOS

Having an established history of enhancing our systems and being blessed with a very able
body of knowledgeable system analysts we were in a very good position to identify what
was missing (for us) in UNICOS. The following is not in any priority order nor is it a
definitive list of missing items, but does capture the more noteworthy ones, some of which
are site specific. By ‘missing items’, it is meant those items deemed necessary to operate
the system to satisfy the internal data center and Boeing engineering customer require-
ments. Some items are given with a minimum of descriptive text, but sufficient enough to
provide the reader with a good level of understanding. Other ones which the author
deemed to be more challenging and/or complex or probably of interest to a wide range of
other sites are provided with a lengthy detailed design description covering subject back-
ground, implementation issues and, in some cases, further areas for future work or study.

3.1 Integration, Configuration Control & System Building Procedures

These procedures are considered essential for being accountable to ad-hoc audits, simply
good business practices, and are needed for being able to reinstate old systems for estab-
lishing a computing environment to rerun some past engineering design analysis. This
may sound mundane but is considered extremely important to the Boeing Company.

The basic tools for carrying out these tasks are all provided within the UNICOS release
software. However, no documentation or cohesive feature for accomplishing them is
offered by the vendor, and so a site needs to develop their own. This came as no surprise as
the requirements of each customer site undoubtedly differ greatly making it a monumental
task or even impossible for the vendor to satisfy. A fundamental requirement for Boeing
was to have buildable system source code which was secured very early on in the procure-
ment cycle and when Cray had little reservations concerning the release of source code
with respect to their internal maintenance processes. Since then, much has been debated

Advancing with UNICOS Toward IRIX June 9, 1998 3

over the access to system buildable source code with the Cray customers prevailing in the
end.

3.2 Human Process Error Prevention

Human beings can at times cause tremendous disruption to the health of a production
computing system when they perform well-intentioned but wrong actions or simply unin-
tentional ones. This aspect is especially serious when data center analysts with root privi-
leges perform these type actions while executing in super-user mode. The most alarming
things can happen when someone employs cut-and-paste operations on a workstation and
clicks the wrong mouse button or clicks it at the wrong time!

The Process Error Prevention (PEP) design for preventing catastrophes focuses on pre-
venting accidents while one is super-user. The single functional requirement is to reduce
the number of system interruptions associated with careless system administration activi-
ties.

All super-user activities are conducted under the command

rsu

 which is a local modifica-
tion to the

su

 command. The

rsu

 command associates a user account with a password and
is only useful to selected system administration people. The most common mistakes that
have been made in the past revolve around:

•

/bin/rm usage resulting in removal of critical files

•

erroneously updating root cron entries; running multiple cron-s

•

modifying root owned configuration files

•

modifying file permissions

•

executing mis-behaving scripts

Probably the most important enhancement in this design is the change made to /bin/rm.
Most users do not specify the -i parameter because it results in a vast number of required
responses. Thus, if -i is not specified the /bin/rm command will act as follows when the
RM_CONFIRM variable is set (by default, when

rsu

 is executed RM_CONFIRM variable
is set automatically):

•

display the current working directory

•

display what files and/or directories have been specified

•

ask user if they wish to continue, and if ‘no’ exit with exit(0)

Exception to this action takes place if executing

make

,

nmake

,

/etc/shutdown

, and the
installation Menu System.

For example if a super-user is positioned in $TMPDIR and enters

/bin/rm test/*

 and in this
directory there are file names teddy, rufus, and fella then, when executing under

rsu

the
following displays result:

rm: current working directory = /wrk/jtmp.007384a

Advancing with UNICOS Toward IRIX June 9, 1998 4

rm file arguments: test/teddy test/rufus test/fella
continue with this rm?

Another very useful facility for logging and synchronizing administrative changes is pro-
vided with a command script named

sysedit

. This command assumes one wishes to edit a
file and accesses a lock file and then requests the super-user to first specify the

rsu

 pass-
word and then prompts for the file’s full path name. The user is requested to enter a
description of the intended file modification, and then allows the user to edit the file. After
editing the file

sysedit

 asks if another file operation is desired, and if not will then remove
the locking file to allow other system administrators to perform

sysedit

 work. The file
name and description provided along with a time stamp is recorded in the

sysedit

log file
located in /etc/README. This logging information has proved to be enormously useful
over the years. It has helped with many problem resolutions such as when someone quite
innocently makes a quick (but erroneous) change and leaves for several days. Typically the
support analyst who is called to deal with the resulting system anomaly will first review
the last few entries in /etc/README for possible clues.

Obviously, more can be done to prevent accidental damage to the system. The process of
dealing with these evolves over time, and by carefully examining each occurrence one can
decide whether to incorporate accident avoidance software similar to that described above
for /bin/rm.

Many other common mistake items are addressed within the Health Monitoring System
design mentioned later.

3.3 Reboot Speedup & Automatic File System Recovery

3.3.1 Reboot Speedup

The released boot process requires numerous human replies which prolongs the boot pro-
cess unnecessarily as the same replies are required every time. This feature automates the
entering of the same replies to help avoid type-in errors and to maximize the service avail-
ability.

This feature was first introduced at the UNICOS 6.1 level to eliminate the delays between
a system panic and the start of the reboot. The recovery from a system interrupt involves to
steps; securing a system dump and rebooting the system. The Reboot Speedup automates
both of these steps.

When the system panics a script ~cri/bin/cpupanic is called on the OWS and its screen
turns red. This script checks if a panic has occurred in the last 60 minutes. If one has,

cpu-
panic

 will not attempt another dump, posts “last panic was N seconds ago”, and inhibits
an “auto” reboot to avoid thrashing on reboots. If one has not, a dump is taken and “boot-
sys -F” is called to reboot the system.

cpupanic

 then checks every 5 minutes to see if the
system has reached multi-user mode. If this state has not been reached within 30 minutes

Advancing with UNICOS Toward IRIX June 9, 1998 5

and another panic has not occurred, a message is issued and the OWS screen color is
changed to yellow. In this event, operator intervention will be required.

The initial run level that /etc/init will achieve will be level 6. At level 6 the script /etc/
init_ask is executed. At the beginning of this script a program is started that does asyn-
chronous reads to the system console and asks the operator to respond.

ATTENTION Please respond within 1 minute
a carriage return and the system will
go to single user mode. By entering
nothing, it will go to multi-user
mode automatically.

Waiting for a response>

If no response given within 1 minute, /etc/init_ask calls /etc/autoboot panic to go to multi-
user mode, otherwise it calls /etc/init S to go to single user mode. When the system even-
tually goes to multi-user mode our Health Monitoring System (see Section 3.24) handles
automatically the starting of NQS queues and the Tape subsystem initialization.

The system boot scripts are modified to automate the boot process. This automation has a
manual override to facilitate special test conditions and for dealing with abnormal condi-
tions such as a ‘system panic’ and for possible problems within the auto-boot process. The
system is automatically started with a single input -

auto

.

3.3.2 Automatic File System Recovery

The automatic file system recovery is accomplished by calling a modified /etc/mfsck with
the -a option. In addition, the /etc/fsck was modified to return a non zero exit value if it
failed for any reason. The modifications to /etc/mfsck were simply to continue forking the
/etc/fsck if it returned non zero exit, up to a maximum of ten times. From our experience
we have seen that after the first /etc/fsck call (the “read” preening phase) that most file sys-
tem errors are cleaned up by the fourth pass. This facility is a huge improvement over what
was available in earlier UNICOS days.

3.4 System and Software Product Level Selection

From our experiences with the COS system we knew that changing system levels (e.g.,
going from UNICOS 7 to UNICOS 8) or a product-set (versions of a compiler, libraries,
header files, loaders, linkers, and associated man pages are defined as a product-set) can
place a burden on system administration staff’s time and energy as well as the user com-
munity. To eliminate the headaches associated with changing levels of this kind, a design
was required to facilitate a near transparent conversion between levels. Independence
between system and product-set levels is considered highly desirable.

For example, the system administrator requires to build UNICOS 8 products while execut-
ing under UNICOS 7 (UuU not withstanding) or the user who wishes to continue running

Advancing with UNICOS Toward IRIX June 9, 1998 6

UNICOS 6 product-sets when executing under UNICOS 7. The last example is real as
UNICOS 7 product-sets introduced 16 compatibility issues with UNICOS 6.1. These
issues were in the areas of a) binary compatibility, b) commands, c) segldr, and d) C com-
piler.

Users control the product-set level by defining the global environment variable SYSLVL.
The default SYSLVL value is defined by the data center. For example, to protect Boeing
users from the compatibility issues mentioned above we defined SYSLVL=6 when we
installed UNICOS 7. Only after some agreed upon period did we change this to “7”.

To support the SYSLVL feature the front-end scripts for the compilers are changed to han-
dle the environment variable SYSLVL. Also, front-end scripts are create for the assembler
(/bin/as), the loader (/bin/segldr and /bin/ld), the assign command (/usr/bin/assign), the
asgcmd command (/usr/bin/asgcmd), and the man command (/usr/bin/man). In these
front-end scripts, if SYSLVL equals the current OS system level, no command parameter
changes will occur - they will merely execute the default system commands. However, if
SYSLVL equals, say 7, commands in /usr/lbin_7 will be executed plus command parame-
ters may be changed. For example, /bin/segldr will execute /usr/lbin_7/segldr and com-
mand parameter references such as "-l /lib/libc.a" and "-L /usr/lib" will be changed to "-l /
lib_7/libc.a" and "-L /usr/lib_7" so that the appropriate libraries will be used.

There were two limitations apparent in this method when upgrading to UNICOS 8 and
user defining SYSLVL=7:

1. If full-path names are specified for header file inclusion in C source code, they will not
be detected. For example, "#include </usr/include/errno.h>" will not be detected and
the user will get the UNICOS 8.0 version of errno.h. If users have code employing full-
path names such as this, the ramifications are that probably the compilation or link
phase will fail.

2. If any file names containing

segldr

 directives are specified in the environment variable
SEGDIR, they will not be scanned and temporarily changed. Thus, references such as
LIBDIR=dir in directive files may cause UNICOS 8.0 libraries to be referenced.

Over the years when faced with upgrading the major UNICOS OS system levels this fea-
ture has allowed Boeing to almost transparently move users to the new levels. This implied
transparency allows the data center to adopt an upgrade schedule that is less likely to be
undermined by users who, at the last minute, decide the new product-sets are causing
problems for them or that they are being forced to recompile and reload, and because of
this require more time to certify their codes for production use.

Obviously, this scheme requires the site to provide additional disk space to accommodate
the multiple system level product-sets. Typically, we provide for no more than two levels,
although this is not a restriction. For example, when we install UNICOS 10 the UNICOS 9
product-sets will require some 270 Megabytes of disk space. I might add here, that this
space also accommodates the libraries needed for UNICOS 9 C90 and TS modes as well
as those to support Programming Environment 1 (Programming Environment 3 is our
default under UNICOS 9 and 10).

Advancing with UNICOS Toward IRIX June 9, 1998 7

3.5 Remote OWS

We have provided our data center operators with a remote OWS. This remote OWS is
located several hundred feet away from the T916 and is located in the data center’s com-
mand center room. This room has system consoles for all of our computing platforms. The
remote OWS is a SUN workstation connected to the real OWS by a local ethernet.

To switch control from the real OWS to the remote OWS the command

rows

 is entered in
any window on the real OWS. This causes a set of five SYSOPS windows to appear on the
remote OWS. While switched to the remote OWS, any screen color changes occur on both
OWSs. Thus, if a bootsys is done in the “(CONSOLE)” window of the remote OWS the
root screen color for the remote and real OWS will change to what is specified by BACK-
GROUND in the /etc/configfile. If a system crash occurs while switched to the remote
OWS, a new console window will appear on the remote and the root screen colors will go
from red to gold to green.

To switch from the remote to the real OWS the command

ows

 is entered on the remote
OWS.

3.6 Disk space Reservation

The disk space reservation scheme is simple in design and relies on DMF for providing the
mechanism to free disk space. Although there are some weaknesses in the design, it does
satisfy 99% of the overall requirements for avoiding job aborts due to lack of disk space.
Over the last six years this scheme has proven itself to be both robust and reliable, low
maintenance, and useful to Boeing.

NQS jobs which use large amounts of disk space have to be single-streamed through a
special queue. The disk space reservation scheme allows a portion of a DMF-managed file
system to be set aside as reservable. Thus, by allowing NQS jobs to specify how much
disk space in the file system is needed via a special command, multiple NQS jobs can be
run simultaneously so long as their total reserved space can be accommodated. Each job
will run in its normal queue, removing the need for a special queue.

The following functional requirements are provided:

1. Users must have the capability of reserving file system space

2. The capability to reserve space should be easily extended to multiple file systems

3. Users and system administrators must have visibility of current guaranteed space reser-
vations

4. Space reservations must be retained across scheduled and unscheduled system interrup-
tions for recovered jobs. Conversely, for jobs not recovered, space reservations must be
released

5. The disk space reservation activity must be time-stamped and logged. All delays in
granting the space reservation should be tracked and be available for reporting

Advancing with UNICOS Toward IRIX June 9, 1998 8

6. The pool of file system space that can be reserved must be adjustable at all times and
should not be limited to the physical size of the file system to allow over- and under-
subscription

The bulk of the work is performed by a daemon script (i.e., no code) which is launched at
boot time. This daemon performs all of the tasks required to deliver guaranteed disk space
to a requesting job as well as the recovery activities needed immediately following a boot.
Granting a space reservation consists of making sure that the requested amount fits within
the file system limit for reserved space and then issuing a dmfree command if there is not
enough free space on the file system.

To request reserved space, a job executes the command /local/bin/rsp. The job is held at
this command until the request is granted. This command is not honored unless the job is
under NQS control.

The syntax for /local/bin/rsp is as follows:

/local/bin/rsp [-f fsys] space

where

fsys

 is the name of the file system and

space

 is the amount of disk space being
requested for reservation. The

fsys

 argument defaults to /big (site specific). The

space

argument can be just a number which will be interpreted as bytes or can have suffixes of
Kb, Mb, or Gb.

The space reservation mechanism will be run on the /big file system only (site specific
requirement). One half of this file system will be set aside for reservation and a single
request will be limited to this also.

All files dealing with space reservation reside in the directory /usr/spool/rsm (Reserved
Space Manager). A /usr/spool/rsm/granted contains a record of current space reservations.
All activity will be logged in /usr/spool/rsm/rsmlog. The amount of space subject to reser-
vation will be kept in /usr/spool/rsm/rsm.conf. The daemon will read this file on every pass
in case it has been updated.

The reserved space manager daemon,

rsmdaemon

, will perform the following tasks:

1. Reconcile /usr/spool/rsm/granted with the list of recovered jobs at system boot time.
Jobs which are not recovered will have their reservations removed from the file.

2. Read reserved space requests from directory /usr/spool/rsm/requests. The daemon will
grant the request immediately if possible. If the requested space will fit within the limit
on reserved space but there is insufficient free space on the file system, the daemon will
issue a

dmfree

 command to release enough disk space. If the requested space will not
fit within the limit on reserved space, no action will be taken. In either of the latter two
cases, the daemon will issue a

qmgr

 hold command on the requesting job to remove it
from execution. When the request can be granted, the job will be released using the

qmgr

 release command and the request removed from /usr/spool/rsm/requests.

Advancing with UNICOS Toward IRIX June 9, 1998 9

3. Read /usr/spool/rsm/rsm.conf for changes in the amount of space allowed to be
reserved

4. Maintain a time-stamped log of all events in /usr/spool/rsm/rsmlog

5. Monitor the free space on the file system. If it falls below a specified threshold, all jobs
with space reservations will be held (using the

qmgr

 hold command) until the free
space rises to a sufficient level. These two thresholds will be initially set to 4% and 8%
of the file system respectively

6. Monitor running jobs via

qstat

 commands. When a job with space reservation termi-
nates, /usr/spool/rsm/granted will be updated

The command executed by a job to request reserved space, /local/bin/rsp, is a simple script
which performs the following steps:

1. Record the request in /usr/spool/rsm/rsmlog

2. Write the request into a file in /usr/spool/rsm/requests

3. Go into a sleep loop waiting for the request to be removed

4. Record that the request has been granted in /usr/spool/rsm/rsmlog

There are two main reasons for concentrating so much of the work in the daemon and
keeping the user command simple:

1. Several of the steps that may be needed to grant the space reservation require root or

qmgr

 privilege. This design allows the user command to remain unprivileged.

2. Timing problems can be avoided. The /usr/spool/rsm/granted file is maintained by the

rsmdaemon

 alone. The /usr/spool/rsm/rsmlog will be used by both

rsmdaemon

 and the
user command

rsp

, but only in write mode.

When

rsmdaemon

 determines that a

dmfree

 command is required, it will compute the tar-
get for free space as follows:

1. A 2 Gbyte pad needs to be maintained (largest file size limit allowed - site specific) so
that a user can

dmget

 a file of the largest allowed size.

2. If there are no current reservations, the target free space is simply the reservation plus
the pad.

3. If there are one or more current reservations, the target free space is the current free
space plus the new reservation.

Implicit in this definition is the fact that a space reservation is only guaranteed at the
moment it is granted. There is no feasible way to keep other processes from using the
space if they want.

The problems and/or benefits provided by this feature are:

•

The scheme described in this design is restricted to use in NQS batch jobs.

Advancing with UNICOS Toward IRIX June 9, 1998 10

•

The scheme works on a strictly first come, first served basis. No attention is paid to pri-
ority or turnaround level in granting reservations.

•

Reserved space, once granted, cannot be guaranteed for the life of the job. There is no
way to earmark a portion of a file system for use by only one job.

•

Disk space can be reserved on /big file system only (site specific - this file system has a
very large average file size blocks to inode ratio; 200 to 300). The scheme could be
extended to other DMF-managed file systems without difficulty, but vastly smaller
average file size blocks to inode ratios (of say, less than 10) would likely make it work
much less well.

•

It is readily apparent that the more users of /big (site specific file system) that utilize
this scheme there are, the better it will work. The more processes there are using unre-
served space, the more likely it is that reserved space will not be available for the full
life of a requesting job.

3.7 Multiple System Dump Areas

Provides the capability for having two system dump areas on disk so that to the extent pos-
sible a system dump can be obtained if one of the dump areas is inaccessible. Obtaining
system dumps is deemed important as the vendor cannot or at least will find it very diffi-
cult to solve a system problem without them.

The OWS cycles between the two dump areas when a system dump is taken. This tech-
nique ensure that both areas are exercised so that the neither lays dormant. Each dump
area is a replica of the other but is located on a unique disk and i/o path each using differ-
ent IOPs.

When the system is booted and eventually goes to multi-user mode (i.e., /etc/init 2), the
script /etc/brc is called which in turn calls /etc/coredd to check if a system dump is
present. The /etc/coredd will check one dump area first and if a dump is present the area
will be assumed to be a dump image. If a dump is not found in the first area checked then /
etc/coredd will examine the other dump area for a dump image. After /etc/coredd com-
pletes, /etc/bc initializes both dump areas.

The following components are modified:

/etc/configfile and ~cri/bin/mfdump on the OWS. The latter component is a front-end to
the actual mfdump which is renamed to .mfdump. /etc/configfile is enhanced to contain a
set of environment variables describing the two dump areas and the last dump area used.

/etc/brc modified to initialize both dump areas.

/etc/coredd modified to located unused dump area to use.

/etc/cpdmp modified to accept its last argument parameter as a dump area. If this parame-
ter is omitted /dev/pdd/dump is used otherwise /dev/pdd/dumpB is specified.

Advancing with UNICOS Toward IRIX June 9, 1998 11

3.8 Job Submission via ftp

We developed a job submittal enhancement to ftp at the UNICOS 5.1 level to service job
submission requests coming in from non-UNICOS computer users.

This feature allows users to submit NQS jobs to UNICOS via ftp. This was a requirement
for our users of CDC (Cybers), IBM Personal Computers (PCs) and Apple Macintoshes
(Macs) which do not normally run the Remote Queueing System (RQS) software. The
only common software running on these systems was ftp, so it was used as the baseline to
support the job submission function. It was a requirement to avoid making changes to the
ftp software at the PC and Mac workstation.

All code modifications in support of this project was done on the Cray side. It was
intended that this code would be usable from a wide variety of workstations, the only
requirement being some implementation of ftp exist. However, this code would not be a
replacement for RQS. RQS (or the locally developed RNQS which, incidentally now
competes with the NQE product from SGI/Cray) is preferable for those workstations that
support it since it provides many more features, including automatic return of output.

The ftp job submission described below was intended for those workstations that cannot
run RQS.

The functional requirements were:

• To support the submission of batch jobs to the Cray NQS system via ftp (qsub)

• To support the return of job status on jobs submitted (qstat)

• To support the control of jobs submitted (qdel)

The ftpd server on UNICOS was modified to recognize a job submission request by
checking the remote file name on a put command. If a job submission was detected, it
would fork a qsub process and divert the file transferred to qsub as its standard input.
Command line options for the qsub. qstat, and qdel commands were supported by using
colons as the delimiter. This avoided the problem that some ftp clients did not support
blanks embedded in file names. The request-id of the submitted job was returned to the cli-
ent after the transfer was complete.

With UNICOS 8 the facility for submitting NQS jobs from ftp was provided. We however,
have kept our ftp job submittal intact for continuity reasons and because it offers slightly
different capabilities.

We would very much like to see either the Boeing or Cray ftp NQS job submit feature in
the IRIX system, and encourage other member sites to so state as well. For this reason the
following implementation details are provided.

Advancing with UNICOS Toward IRIX June 9, 1998 12

3.8.1 The ftp get and put commands

The batch commands take the general format of either the ftp put command (for job
request submission) or the ftp get command (for gaining status or controlling (e.g. delet-
ing) a job).

These formats are:

 put local-file remote-file
 get remote-file local-file

When the ftp get and put commands are used for UNICOS remote batch processing, the
user substitutes for the remote-file name one of three commands:

 qsub: for submitting a job request
 qstat: for requesting status
 qdel: for deleting or signalling a running job

Each option and each option value for these commands follow immediately after (i.e. no
blank spaces). And each option or option value is delimited by a colon.(Colons are used
instead of spaces as delimiters because some ftp implementations will not handle spaces.)

 Below is an example of the ftp command for receiving job status:

 get qstat:-r:-l my_file

Spaces separate the ftp command, the remote-file name (qstat:-r:-l) and the local-file name
(my_file). In the remote-file name itself, colons, rather than spaces, delimit the options
(and any option values).

The qsub, qstat and qdel commands and their respective options are part of the UNICOS
Network Queueing System (NQS) which handles the requests for batch processing and
receives the commands from the ftp software.

When the user ftp-s to UNICOS, the same environment variables apply as if you were to
log in to UNICOS and submit jobs directly with NQS (i.e. QSUB_ variables are defined
with ftp just as they would be when qsub is invoked from the command line).

3.8.2 Submitting a batch request (qsub:)

The NQS command qsub allows batch job submission. The ftp put command is used to
provide the interface to this qsub command on UNICOS.

The put command followed by the name of the batch-request script file to causes the
script file to be submitted. This is the local-file. Most implementations of ftp will also

Advancing with UNICOS Toward IRIX June 9, 1998 13

allow a full file path to the script file. The script file must be in NQS batch-request script
file format.

The script file name should be followed by a space and the qsub: command (include the
colon). The example below shows the basic command format:

 put script qsub:

 where script is the name of the batch-request script file.

In addition to the basic form above, qsub: will accept all valid command options of NQS
qsub. Any option follows immediately after the command, delimited by a colon. Addi-
tional options and option values are likewise set off by colons rather than spaces. For
example:

 put script qsub:-q:ME:-lT:600:lM:10

will transmit file script to UNICOS. The :-q:ME option submits it to NQS in medium ser-
vice class (ME). The :-lT:600 option (and value) sets a CPU time limit of 600 seconds.
The :lM:10 option (and value) sets a memory usage limit of 10 megawords.

Successful submission of a job request will result in an NQS request identification number
being returned to the user. This number can be used to display status of the job (qstat) or
delete it when processing (qdel) (see below).

Note: NQS qsub options are also available for use when entered in the script file.

3.8.3 Requesting status (qstat:)

The NQS command qstat displays the status of the NQS queues and job requests. The ftp
get command is used to provide the interface to qstat.

The get command should be followed by a space and the qstat: command. Follow qstat:
with any of the available options. Delimit options by a colon. Note: if no options are used,
you still must end the qstat command with a colon for proper interpretation by the UNI-
COS software.

The qstat command and any options should be followed by a space and the name of the file
to receive the status information. The file is be placed on the user’s workstation.

The basic batch status command is shown below:

 get qstat: myfile

where myfile is the name of the file to receive the status. If no file name is specified, ftp
will create a file with the name qstat:. Thus, user should always provide a file name for the
status.

Advancing with UNICOS Toward IRIX June 9, 1998 14

As an alternative to the file name for status information, a - character can be used. In most
implementations of ftp, the - character sends the status information to the screen rather
than a file.

Below is an example of an ftp status command with the information sent to the screen:

 get qstat:-r:-l -

where -r is the option to view currently running requests in pipe and batch queues, -l is the
option to view the summary of queue limits, and the - character is the request to send the
information to the screen.

3.8.4 Deleting/Signalling a running request (qdel:)

The NQS command qdel deletes or signals running batch requests. The ftp get command
provides the interface to qdel.

The get command should be followed by a space and the qdel: command and, immediately
after, the batch request identifier (returned when you submitted your job with qsub). After
another space, specify a name, to send qdel output messages to a file, or type a - character,
to send output to your screen. Example:

 get qdel:12321 -

The reason qdel is implemented with the get command is that get provides the mechanism
to return the standard output of the command (e.g. notification that the job has been suc-
cessfully deleted) as a file transfer to the workstation user.

Any of the NQS options can be used with qdel (see below). As with qsub and qstat
options, qdel options immediately follow the command and are delimited by colons.

 An example of qdel, using the -k, kill option, to kill the running batch request 12321 is:

get qdel:-k:12321 -

where the - character specifies that the output messages be sent to the user’s terminal.

3.9 Catastrophic Disk Failure Recovery

The disk subsystem consists of many individual disk devices. When one of these disks
fails, it is necessary to repair the unit and then possible rebuild and reload file data. The
rebuilding and reloading of data is complicated by the fact that each disk contains many
file systems, and file systems may span disk units. Backup data is dumped by file system,
not by disk unit. Therefore the reloading of a disk unit can be a complicated process of
identifying, rebuilding, and reloading many file systems across multiple disk units. This
feature implements a set of semi-automated procedures which allows extremely rapid and
foolproof reloading of a disk in the event of a failure; the only human intervention being
the specification of the failed disk unit(s).

Advancing with UNICOS Toward IRIX June 9, 1998 15

Some special actions will be required in the event that the DMF data base is lost, or the
dump/reload data base is lost, or the root device is lost.

This feature has been used infrequently, but when it is, it is an invaluable asset.

3.10 Data Migration Facility (DMF) Enhancements

Over the years working with DMF we have developed a number of local enhancements.
Today we configure the client/server DMF 2.5.5 under UNICOS 9.0.2.8 which is manag-
ing 20 Terabytes of data and 2.3 million files. The average annual data growth is 6.25 Ter-
abytes, so by mid 2001 we expect to be managing some 39 Terabytes of data. The majority
of our local configuration mods are made to the DMF configuration file. The configura-
tion file in use depends on whether we are running the UNICOS guest or running the cli-
ent/server on the host system. The more significant local mods are given below.

• dmdstop flush code: A”-f” parameter was added to dmdstop to flush the msps and
allow the dmdaemon to finish its active requests (this allows dmget-s to be gracefully
terminated during system shutdown). After flushing, the dmdaemon waits 2 minutes to
allow the EOT descriptors to be written on tapes.

• dmget-s delayed due to low disk space: The dmf_config parameters controlling this
are:

FS_MIN_FREE - Minimum free % before dmget-s are delayed - default is 5%.

FS_DELAY_TIME - Secs between rechecking the % of free space for delayed dmgets - default 120

MAX_DMGET_DELAY - Max secs to delay a dmget request - default 1800

• DMF express pipe: An “express pipe” /usr/dm/dmd.xreq.pipe is added to service
dmstop and dmdstat requests. I hope the need for this is obvious to the reader. If not, a
brief description for this is as follows. Our Health Monitoring System (see Section
3.24) periodically attempts to verify that DMF is “alive and well”. It uses dmdstat for
this purpose. If DMF is busy servicing requests the dmdstat can take considerable time
to be noticed by the dmdaemon. The “express pipe” helps avoids false alarms from the
Health Monitoring System. The same is true for dmdstop which is used during sched-
uled system shutdowns.

• dmmigall -s parameter: A “-s” parameter was added to specify a minimum file size for
migrating files (N.B. A bug was fixed to implement the -l parameter).

• Requeueing secondary msp requests: We added code to retry the primary msp copy
once, after a dmget from the secondary msp copy failed. This was to avoid trips (a 4
hour retrieval time) to the offsite tape vault when the primary msp tape copy is marked
“hbadmnt” for no good reason.

One other local enhancement of note is the mvhandle and cphandle commands (which I
believe were authored by GE originally but we received it from Cray in February 1994 as
an unsupported feature). The mvhandle command moves a migrated file(s) to another
filesystem without unmigrating it while cphandle will copy a migrated file(s) to another
filesystem, and unmigrating them in the destination filesystem.

Advancing with UNICOS Toward IRIX June 9, 1998 16

The command syntax:

 mvhandle [-f] files target

 cphandle [-f] files target

The primary function of the mvhandle utility is to move migrated files to another file sys-
tem without unmigrating them unlike mv which would. The usefulness of mvhandle is in
moving large migrated files to another file system. Since the file is not unmigrated to do
the move, the source file system as well as the destination file system is not impacted by
the move. Disk space does not have to be made available since the file stays migrated. If a
file is dual-state, the file, when moved to another file system, will not maintain its online
copy. It will lose its dual-state status and only be off-line. The dropping of the online copy
is done for performance reasons. Moving a migrated file is very quick compared to copy-
ing a large online file. mvhandle can also be used to move migrated as well as unmigrated
files within a file system, but this is not mvhandle’s strong point. Moving files within a file
system is just a rename system call. Also, mvhandle can be used to move unmigrated files
to another file system, but this operation is just a copy.

The primary function of cphandle is to copy migrated files to another file system without
unmigrating them in the source file system. The file is unmigrated in the destination file
system to make the copy. The copy is a regular file with no connection to the source file.
The source file remains migrated and the destination is merely a copy. The usefulness of
cphandle is in copying migrated files to another file system since the file is unmigrated in
the destination file system and not the source file system. Disk space needs to be made
available in the destination file system, but not the source file system. If a file is dual-
state, the online copy will be used in making the copy. The file will not be unmigrated in
the destination file system in order to make the copy. cphandle can also be used to copy
migrated files within a file system. cphandle operates in the same manner as when copy-
ing files to another file system. Since the source and destination file systems are the same,
the file will be unmigrated in the source file system. The only advantage to using cphandle
for this case is that it can be done with one command instead of "dmget file ; cp file tar-
get" and the source stays migrated.

cphandle can also be used to copy unmigrated files within a file system or to another file
system, but this is not cphandle’s strong point. Copying files in this case is merely a copy.

Boeing would very much like to have all these DMF enhancements ported to IRIX.

3.11 Tape Volume Management System (TMS)

When we first installed UNICOS 5 there was no feature that provided management for
tape volumes. Since then, Cray has released the Reel Librarian and subsequently the Vol-
ume Management Facility. However, these feature releases came too late for Boeing as we
needed the feature in 1989. For this reason we developed our own (basically we ported
what we used on the COS 1.14 system). Tape volume management is a critical need for

Advancing with UNICOS Toward IRIX June 9, 1998 17

data center management as well as the end user. In fact, the data center is by far the biggest
user of our TMS.

It should be noted that with UNICOS 10 the UNICOS Tape Subsystem is released as a
separate product in binary form. A new feature with this is the introduction of “user exits”.
As a result of this, all of our local tape subsystem modifications have been redone to use
these new user exits. The implementation details for this are provided in the following
Section.

The commands we have developed for TMS are as follows:

tmsrsv - reserve a tape volume
tmsls - list volume names
tmsrm - release volume ownership
tmsxfer - transfer volume ownership
tmsmod - modify volume information

 where

 tmsrsv [-g dev-grp-name] [-l labeltype] [-x expir] [-c comment] [-G group] [-a acct] [-m mode]
 tmsls [-F] [-L] [-v vsnlist] [-V vsnfile]
 tmsrm -v vsn [-V vsnfile]

tmsxfer -v vsn [-V vsnfile] -u userid
tmsmod -v vsn [-V vsnfile] [-x expir] [-c comment] [-G group] [-a account] [-m mode]

These are utilities to allocate, list, delete, transfer ownership, and modify attributes of
allocated scratch tapes. The bracketed items are optional parameters.

Options:

-g device-group-name

Specifies the name of the device group. Either "CART" or "TAPE", with "CART" being
the default. "CART" is the preferred media, since it holds more data, is more error free,
and is faster.

-c comment

Comment line (less than 80 characters)

-l labeltype

Type of label: "al" ansi-labelled, "sl" IBM-standard label, "nl" not labelled. "al" is the
default and is preferred.

 -v vsn

 Vsn or vsn(s) separated by colons (:).

Advancing with UNICOS Toward IRIX June 9, 1998 18

 -V vsnfile

 A name of a text file that contains vsn(s). -V and -v are mutually exclusive.

-u userid

A userid to transfer tape ownership.

-F

Generate a "full" list. If not specified, tmsls lists just vsns. If -F is specified, the follow-
ing is written to the standard output: vsn, userid, device-group, label-type, creation date,
expiration date, and comments.

-L

Generate a "long" list. If not specified, tmsls lists just vsns. A "long" list contains items
listed with the full list, plus additional ones.

-x expir

This parameter specifies the days left until the volume expires. This is different from the
label expiration date as specified by the tpmnt command. If expir is 0, then the tape is
held indefinitely. This is the default.

-G group

This parameter specifies group membership for the tape. There is only one group associ-
ated with each volume. The default for tmsrsv is the group id under which the process
runs.

-a account

Specifies a billing account to bill tape ownership. The default is the account under
which the process runs.

 -m mode

An octal number specifying who may access the volume.

Bit 0400 read by owner
Bit 0200 write by owner
Bit 0040 read by group
Bit 0020 write by group
Bit 0004 read by others
Bit 0002 write by others

No other bits are defined. The default is -m 0640.

Advancing with UNICOS Toward IRIX June 9, 1998 19

Five additional commands are provided for data center personnel, and just a brief descrip-
tion is provided here.

tmsdb -ADRSELINQ -U upfile -p poolid -l label -g generic_type -s status -u userid -v vsnlist -V
vsnfile -c comment -x expir -w location -r rackid -G group -a account -m mode -o prefix -n prefix

tmsrsv -g generic_type -l label -x expir -c com -G group -a acct -m mode -p poolid -u userid -S silostat

tmsls -RW -p poolid -s status -u userid -G group -a account -S silostat

tmsrm -v vsnlist -V vsnfile -u userid

tmsmod -v vsnlist -V vsnfile -x expir -c comment -G group -a account -u userid

These commands provide: add volumes, delete volumes and revise information about vol-
umes in the tms database. To execute these program requires the user to be super-user,
taplib, or a member of the operator group.

In addition the utilities tmsrsv, tmsls, tmsrm and tmsmod allows the operator to perform
their function on behalf of the user specified by -u userid. tmsrsv also allows the operator
to allocate from any specified pool or silo domain, and tmsls allows the operator to list
vsns in a specified pool, or with any specified status, group, account, or silo domain (in or
out). These additional functions are not given to the user.

Boeing intends to port TMS to IRIX.

3.12 Tape Management Facility (TMF)

As mentioned above, the UNICOS 10 system release has caused us to re-think our local
code modifications to the UNICOS TMF. Use of user exits is made as follows. These are
mentioned in the UNICOS 10 Release Overview notes (RO-5000 10) and fully docu-
mented in the UNICOS Tape Subsystem Admin Guide (SG-2307) which is online at:

http://swpubs-internal.cray.com:8085/library/all/2307_10.0/1604

For our purposes the modules /usr/src/cmd/c1/tp/tpuex.c and /usr/src/cmd/c1/tp/tpuex.h
are modified. The recoding effort was actually very straight forward, once we understood
how the ‘exits’ worked. We took the whole of our TMS module and locally inserted it at
the end of tpuex.c and modified other tpuex.c areas to make calls to this module. This
module name is tms() and is given in more detail below:

tms(irw, req)
int irw; /* read=1, write=2, process_scratch=3 */
struct uex_table *req;
{
 struct tmsvaxrq { /* Validate Volume access request*/
 int magic; /* magic number */
 int uid; /* requestors uid */
 int gid; /* requestors gid */

Advancing with UNICOS Toward IRIX June 9, 1998 20

 int rwflag; /* read=1, write=2 */
 char vsn[8]; /* vsn */
 int scr; /* scratch request flag */
 char pvsn[8]; /* previous vsn, if any */
 int volume_sequ; /* volume number in set */
 int acctid; /* requestors account id */
 int label; /* label type */
 long int density; /* density */
 long int mbl; /* block size */
 long int lrecl; /* logical record size (if any) */
 char recfm; /* record format */
 char device_id[16]; /* device name */
 int res; /* reserved for expansion */
 } req_tms;

This single module allows us to validate tape volume read and write requests and for pro-
cessing additional tape volumes for file system dumps when dump exhausts its given VSN
set. When dump exhausts its VSN list it is necessary to obtain another tape volume from
the appropriate scratch tape pool and assign it to the dump process and its VSN set. This
aspect assures us that the file system dumps will never abort due to insufficient VSNs
being specified, as is the case with the released dump command.

Todate, we have only been able to test this recoding effort under the UNICOS guest sys-
tem running UNICOS 10. So far, testing has shown it to work as designed.

The “user exits” provided along with the binary form have allowed us to continue applying
our local modifications to UNICOS TMF.

The UNICOS TMF feature together with its ‘user exits’ should be included in IRIX.

3.13 Data Security

Data security addresses concerns related to file access controls, system penetration, and
classified processing. A high degree of data security is provided by default in the UNICOS
system and prevents unauthorized customers from obtaining any information which can be
used to penetrate other customer accounts; prevents customers from finding out about
other users of the system outside their group; provides an optional reporting facility detail-
ing security related activities and prevents access to system resources other than for autho-
rized purposes. Elements of the data security feature protect certain sensitive files such as
the password file from being read by users, restrict use of the super-user account, modify
system commands such as who and ps so that information about other users is restricted,
modify the mail command to strip out non-printing characters, establish more restrictive
defaults for file access by users other than the owner, and remove the capability to disable
process accounting.

Advancing with UNICOS Toward IRIX June 9, 1998 21

Utilities for encrypting and decrypting data are available to provide an additional layer of
data security for the more sensitive customer data.

The UNICOS system may be run in stand-alone mode to accommodate classified process-
ing. The Department of Defense (DoD) processing requirements, such as clearing memory
and disk storage before and after processing, are satisfied.

The functional requirements we developed for Data Security were as follows.

• Prevent unauthorized customers from obtaining any information which can be used to
penetrate other customer accounts.

• Provide visibility of all security related activities; i.e., record failed attempts to log on
or to change user id.

• Prevent access to system resources other than for authorized purposes.

• Minimize a user’s ability to observe other activity on the system.

• Minimize a user’s ability to compromise or adversely affect another user’s interactive
logon.

• Enforce password expiration to minimize damage resulting from an account break-in.

Some of the above requirements need further explanation.

Preserving the integrity of user and system data must be the fundamental objective in any
security scheme. Due to the collegial nature of the UNIX system and its development, this
aspect has not received the attention necessary to use the system at a place like The Boeing
Company.

Many system support files that we would consider sensitive in nature are readable by
everyone, the idea being that, with very few obvious exceptions, just reading a file cannot
constitute a security breach. This aspect needs to be judiciously restricted. Further, any
modifications that increase the difficulty of penetrating the system from the outside should
be investigated.

It has been the practice at Boeing to consider the identity of our clientele to be privileged
information. This being the case, we cannot allow logged-on users access to information
about who else is using the system or about what other users are doing. Several commands
are designed for just this purpose and need to be restricted.

In the unlikely event that the system is penetrated, logs of security-related activities will be
needed in the search for the perpetrator. It generally takes many attempts to guess a user’s
password and evidence of these failed attempts should be available as evidence of when
and from where the penetration occurred.

On most UNIX systems, the user has the ability to write to another user’s terminal, either
directly or through the mail utility. A malicious user could send a message with embedded
escape sequences which could cause havoc to the recipient’s session. A sophisticated user

Advancing with UNICOS Toward IRIX June 9, 1998 22

could even devise a scheme which would endanger other users’ files. Some way to limit a
user’s exposure to this danger should be implemented.

Changing passwords on a frequent basis makes breaking in to a system all the more diffi-
cult. As many user’s as possible should be required to do this as a matter of common
sense.

Significant enhancements in the security area were added to UNICOS 4.0 release. Some of
the new features were access control lists for individual files, a system of security levels
and compartments assigned to users and files to restrict data interchange between users,
enhanced logging of security related incidents, and a set of privileges which can be
granted on a user by user basis. Although UNICOS security is designed as an all or noth-
ing package, some of its features can be left unused even if they are available. In this man-
ner, the desirable portions can be utilized without undue impact to the user.

We decided very early on that the UNICOS security feature should be turned on. This pro-
vided access control lists to individual files, enhance security logging, and restricted the
use of SUID and SGID programs. At least initially, no compartments would be used for
user files and all users would be given the same security level. This made most of UNI-
COS security invisible to the user. Some use of compartments was however necessary for
system administration.

The following files were decided to not be readable by the user:

/etc/passwd
/etc/group
/etc/utmp
/etc/wtmp
/etc/udb.public
/dev/mem
/dev/kmem

The password, group, and udb files contain user id’s and other information about everyone
allowed to use the system. The utmp and wtmp files contain data about all the users cur-
rently logged on to the system. /dev/mem and /dev/kmem are system and kernel memory,
respectively.

It will not be possible to log in as the superuser or to su to the superuser account except at
the system console. Special exception to this was provided to a set of internal users how-
ever (see below and the Section 3.2 on Human Process Error Prevention).

Execution of the who, ps, last, udbsee, jstat, groups and finger commands will show
information only about the user and the members of his group rather than about all logged-
on users.

The mail command will be modified to eliminate all non-printable characters before dis-
playing messages on the screen.

Advancing with UNICOS Toward IRIX June 9, 1998 23

The default umask in /etc/profile will be changed to 077 and the command mesg -n will be
added.

In more detail this meant:

• Files /etc/passwd, /etc/group, /etc/utmp, /etc/wtmp, /dev/mem, /etc/udb.public and /dev/
kmem will have their modes changed to remove all access by others. They will also
have their group identity changed to a new group introduced for this purpose. All pro-
grams that read or write these files will be changed to SGID to this new group. Data
center personnel that need access to these files can be made members of this group.

• The usage of su to change to the super-user will be restricted to a small set of data cen-
ter personnel (see the Section 3.2 on Human Process Error Prevention).

• The modules who, ps, finger, jstat, udbsee, last, and groups will be modified to test
whether the user executing the command is a member of the special group owning the
files listed above. If not, only those users or processes belonging to the user or his group
will be displayed. If yes, the commands will work as normal and display all informa-
tion.

• The mail command will be modified to examine all messages and strip out all non-
printing characters except for bell, backspace, horizontal tab, line feed, vertical tab,
form feed, and carriage return.

• The file /etc/profile which is executed at login for all users will be modified to add the
commands umask 077 and mesg n

The above meant that no external changes were needed to existing commands and no new
commands need be introduced. The differences the users will notice would be their inabil-
ity to read certain files, the lack of information about users outside their group when the
who, ps, or finger commands are executed, and the more restrictive umask default.

The Problems and/or Benefits we saw with this data security design were as follows.

Standard UNIX has some security features related to user passwords that are of interest.
Passwords have to be at least six characters long, must have at least two letters and one
digit or special character, and must not be a circular permutation of the logon id. In addi-
tion, accounts can be set up so that passwords must be changed after a specified maximum
interval and/or cannot be changed in less than a specified minimum interval. This last item
is to prevent a user changing a password at the required time and then immediately chang-
ing it back to what is was before. The su utility for changing user ids keeps a log of all its
activity, whether successful or not. Failures to provide the correct password at initial logon
in three tries are logged at the system console.

The Boeing Computing Security Requirements Manual was examined and it is our conten-
tion that secure UNICOS with the proposed enhancements met its requirements.

It is understood that the above mentioned access restrictions on usually public files may
cause some of the UNIX System V conformance tests not to run. This is regrettable, but
the added system security seems to make these changes worthwhile.

Advancing with UNICOS Toward IRIX June 9, 1998 24

Some impacts to our customers who were use to the security on other systems such as
CDC/NOS Cybers and the Cray X-MP/COS were as follows.

• There would be no individual file passwords.

• It would be possible, through the umask and chmod commands, for a user to open up
his files to greater damage than he may be used to. If any directories are made writable
by others, all of its files can be deleted, overwritten, or otherwise damaged without the
user’s knowledge. Care must be taken to instruct users on how to ensure data security.

Boeing is contractually required to allow non Boeing customers (known as suppliers) to
use the system. This feature, in part, ensures the integrity of the Boeing data and con-
nected computing platforms while allowing suppliers access the UNICOS system. Even
though a Boeing user marks a file as public in the normal UNIX sense, it must be secure
from inspection or alteration by a supplier. A contradictory requirement is that a Boeing
user must be able to make individual files accessible to a supplier on an occasional basis.

Segregation between Boeing and supplier files was provided as follows:

• All Boeing users are added to a group called ‘boeing’.

• All Boeing users have home directories in /u/ba, /u1/ba, /u2/ba, etc. The modes on these
directories is 750 and the group ownership defined as ‘boeing’. This prevents any user
not a member of group ‘boeing’ from accessing any file in the /u/ba directory tree, for
example.

• Home directories for supplier users are setup under directories /u/va, /u1/va, etc. The /u/
va-type directory can be changed to mode 750, owned by the appropriate supplier
group, to prevent alternate access, at the discretion of the supplier.

• Execution under UNICOS of network commands such as ftp and remote commands
such as rcp and remsh/rsh are restricted to members of group ‘boeing’. This prevents
supplier use of the UNICOS system as a gateway to the Boeing internet. File transfers
can still be initiated on a remote host at the other end of the transfer, i.e., network
access into the UNICOS system is not being restricted. We restrict entries in the net-
work routing table so that the supplier groups cannot use the ftp and remote commands.
The -gid flag is a Cray enhancement to the route command.

• File sharing is achieved by copying a file to UFS (Boeing’s UNIX File Server), to /tmp
or /usr/tmp, or to /u/share (a directory intended to be more permanent than /tmp). No
other capability exists to make a file accessible to another user segment without moving
it.

The best approach to security is to think about it seriously in terms of what it means to
your business. With this in mind we have daily processes that are executed. Some of these
are listed below.

• Run the UNICOS facility spcheck with the default options. Save the outputs each day
and use diffs to look for changes. Locally we have added the privilege to create SUID
and SGID files to spcheck’s list of non-standard privileges and to vary the periods with-
out any usage that defines a stale account.

Advancing with UNICOS Toward IRIX June 9, 1998 25

• Run reduce with -t logn to scan the security logs for all login attempts made since the
last run. Then grep for errors. Things to look for are login attempts by data center per-
sonnel from remote hosts that you do not recognize, login attempts from data center
workstations by users that are not recognize, and a pattern of many login failures on dif-
ferent accounts originating from a single remote host (We have only spotted such an
occurrence once; it was a real breakin attempt.)

• Scan the su log. This is a standard procedure recommended in all books on Unix secu-
rity. However, since UNICOS disables an account that has three su failures in a minute
and spits out a nasty warning after two failures, there is a strong disincentive for users
to try to guess the root or other passwords with su. We have never found any evidence
of suspicious activity in our su logs.

• Run the UNICOS facility spfilck. This is another program for checking the integrity of
our installed software. It uses a template which lists the owner, group, mode and secu-
rity label for as many programs as you wish to include. our template includes all the
executable binaries we have that are suid or sgid or that have a security label.

• Run the program tripwire which was developed by Gene Kim and Gene Spafford at
Purdue University. This program checks the ownership, group, and mode of a given list
of files. It also checks the digital signature of each file, which is sort of like a more
sophisticated checksum, but is much harder to spoof than a checksum. our tripwire tem-
plate has about 1400 files listed in it.

As you can see, there is a great deal of overlap in what these programs do. Our HMS (See
Section 3.24) is also doing some of the same sort of checking. However, they each do
things a little differently and look at a different set of files.

Tripwire, of course, knows nothing about MLS and does not look at security labels.

In addition to the above, we have a cron entry which disables all accounts that have not
been used for 90 days. This is strongly suggested if not required by Boeing security stan-
dards. The cron job runs once a week.

On a very infrequent basis (less than once a year), we look for accounts that have not been
used for even longer and should be eliminated. This is always hard to do, since you have to
figure out what to do with the files.

We have made additions to the passwd command to restrict acceptable passwords. UNI-
COS comes with fairly stringent limits on acceptable passwords: they must be at least six
characters long, contain one non-letter, and the user name or rotations of it are not
allowed. However, this still allows passwords like boeing0, which I considered too easy to
guess. We beefed up our password command by splicing in code from the password+ pro-
gram developed by Matt Bishop. This disallows more passwords based on attributes of the
user that might be found in the password file (such as phone number or mail stop) and also
does a dictionary lookup. We have a large (200,000 entry) "dictionary" of 5, 6, and 7 char-
acter strings. We allow passwords that contain words 4 letters long or less. On a very infre-
quent basis (less than once a year), we run the crack program to see how many passwords
we can guess. We enlarge the dictionary if it seems warranted.

Advancing with UNICOS Toward IRIX June 9, 1998 26

One area of UNICOS security that probably has not received enough attention is denial of
service attacks. This was amply demonstrated a month or so ago when one of our engi-
neers froze up the system twice by filling the callout table with sleeps generated from rsh
commands. It is unfortunate that nearly all of the UNICOS user limits are on a per job
basis. With no limit on the number of jobs a user can spawn, these limits are not very
restrictive. Per-user, system-wide limits on jobs and processes would go a long way to
alleviating this problem.

So what about IRIX Security?

We have to admit that we have not gotten into security on our Origin2000 as much as we
should have. At this time we certainly are not in a position to comment on its shortages or
weaknesses. We can say what we have done so far and are planning to do.

We can say that, given the frequency of security alerts that SGI generates, they are very
aware of and attentive to security concerns on IRIX and we feel that they are on top of
things.

IRIX supports a security auditing mechanism much like the security log on UNICOS. We
have set it up to record a small set of the events it can record. Any more than this seems to
chew up an awful lot of disk space. We are logging little more than login attempts. We
check these for failures from time to time. One shortcoming we have noticed is that
records of failed logins do not contain the name of the originating host as they do on UNI-
COS. This is an invaluable piece of information when attempting to trace a breakin
attempt. They also contain the name of invalid accounts that people have attempted to use.
This is not a good idea. People too often get ahead of themselves and type in their pass-
word where the user name should go. Thus, what is recorded as an invalid user name, is in
fact someone’s password. These should not be displayed. UNICOS merely puts out
"INVALID" in these cases.

We currently have an rsu (see Section 3.2 on Human Process Error Prevention for a
description of rsu) on the Origin which requires no password. If you are a member of the
proper group, executing rsu gives you root access immediately. This will be replaced by a
real rsu or possibly the sudo program. The sudo command is a more standard Unix utility
which allows certain users to perform certain privileged administrator tasks without actu-
ally becoming root.

There are currently no plans to port the UNICOS passwd enhancements to the Origin. The
data separation scheme using the boeing group was installed on the Origin at the begin-
ning, but there seems to be a problem on IRIX which will prevent the scheme from work-
ing. There is still a requirement that the parent directory of a user home directory be
publicly accessible for a .rhosts file to be supported. We noticed in comparing the output
from ls -l of /u on our IRIX with UNICOS that ba, bb, and bc have execute permission for
others. This was done because of the .rhosts problem. If we have to leave /u opened up in
this fashion, the scheme will not work.

Advancing with UNICOS Toward IRIX June 9, 1998 27

In summary, UNICOS does provide a very high level of data security but Boeing needed
additional items in order for it to meet The Boeing Computing Security Requirements. In
all, the effort to enhance the UNICOS security was about six labor weeks.

We still have much to do to ensure we have adequate security in IRIX.

3.14 File Size Limits

There have been many instances when a process has created a very large file and
exhausted the file system. Even DMF cannot cope with such occurrences. This situation
can cause a great deal of work on the system to be lost.

The problem can, in large part, be resolved by enforcing a per file per process file size
limit for those accounts that do not have any requirements for large files. This enforcement
is applied equally to both interactive and NQS work and is controlled by the pfilelim[b]
and pfilelim[i] values in the UDB.

It should be noted that files created by either rcp or NFS clients are not subject to the file
size limit enforcement.

The NQS source code and librsc/setlimits.c were modified to support this feature.

This feature is desirable in IRIX as well.

3.15 CPU Time Limit Extension

Modified OS kernel to allow for more cpu time when process issued a SIGCPULIM. The
vendors default value of 3 seconds was deemed far too small. Under UNICOS 10 this
modification is no longer required as it can be defined with the Installation Menu System
using XTRASEC.

IRIX should also provide the same capability.

3.16 User Controllable File Restore

This design describes a mechanism for allowing users to do their own file restores under
the UNICOS system. Historically, when a user needed a file restored, he would call the
data center help desk who would forward the request to a technology analyst. This made it
difficult or impossible for restores to get done during evenings or weekends. Implementa-
tion of this design will speed up the restore process and free up valuable analyst time.

The functional requirements established for this feature were as follows:

• Users must have the capability of initiating a restore of any file they own at any time

• Users must be prevented from restoring files they do not own and from restoring files
to any location other than where the file was when it was dumped.

Advancing with UNICOS Toward IRIX June 9, 1998 28

• A catalog of all existing dump tapes must be maintained to facilitate locating the
proper tape for use in the restore.

• Restores in progress when the system is taken out of service must be recovered or
restarted from the beginning when production is resumed.

• Privileged users should be allowed to restore any file.

• User restores must be limited so as to prevent exhausting filesystems and
monopolizing tape drives.

• A complete log of restore activities needs to be maintained so that problems can be
resolved and a record of what tapes were actually used is available.

The feature was implemented in two pieces: Enhancements to the way base and incremen-
tal dumps are taken so as to produce catalogs of dumps, and a user interface to the restore
utility, which will accept the user’s input specifying which files are to be restored and then
spin off one or more restores to do the work.

The dump enhancements make use of the -A parameter introduced at UNICOS 8.0. This
flag is used to specify an alternate output file which can be read by restore to produce a
listing of all the files written to dump.

Our file system dump procedures were modified to run a restore in parallel with each
dump, so that a catalog file is written while dump is proceeding. Some minor modifica-
tions were made to restore so that the catalog will contain the file owner in addition to the
file name.

A mechanism was added to the system startup scripts to recover any user restores in
progress at the time of a scheduled or unscheduled system interruption.

It was necessary to implement the dump catalogs at least a month before automated
restores were made available to the user so that a partial set of catalogs would be in place.

The user initiates a file(s) restore by executing the command urestore:

urestore [-f filelist] [-d yymmdd] [-b | -B] [-m mail_address] [-o] [files]

The user can, if running interactively, specify no parameters, in which case the program
prompts for a list of files or directories, and a date specifying the dump tapes to be used.
The user can also specify a list of files on the command line or a file containing the list
with the -f flag. File names can be absolute or relative: relative file names will be taken as
relative to the current directory. The date can be specified with the -d flag. If run interac-
tively, the program will request confirmation from the user after consulting the dump cata-
logs to make sure the requested files are on the specified tapes. If the specified files are not
found on the requested dump tape, the user will be given a chance to specify another date.
The user will be allowed to restore only those files and directories that he owns. If any
specified files or directories already exist on disk, they will be removed before the restore
is initiated. An interactive user will be given the option of skipping those files and directo-

Advancing with UNICOS Toward IRIX June 9, 1998 29

ries. The user will be notified by mail when the restore completes. The -m flag can be used
to specify an alternate mail address and -m 0 can be specified to suppress mail notification.
The -b option can be used to request that the most recent base dump tapes be used, while
the -B option requests that the restore be done from the most recent base dump followed
by all the subsequent inc dumps in sequence. This is to restore an entire directory that was
deleted, but only some of the files in it were recently modified. The -o option requests that
restored files overwrite any existing disk files with the same name. The interactive user
will be asked whether this overwriting is to be done if the -o option is not specified. In a
batch job, no overwriting will be done unless -o is specified

urestore will recognize a privileged mode based on membership in group tec, qa or help.
A privileged user will be allowed to restore any file or directory.

An additional user command called urstat is supplied which displays the status of any
restores the user currently has active. The exit status of this command is the number of
restores that are still in progress. If the user supplies one or more request ids on the urstat
command line, only those urestore requests are reported on.

The dump enhancements to produce dump catalogs were effected by modifying the local
file system dump script. The dump statement in this script had the -A flag added to it,
specifying that the alternate dump file is to be written to a named pipe. Just before the
dump statement, the pipe is created with a mknod command, and a restore to read the pipe
is launched into the background. After the dump completes, the pipe is removed. This is a
little cumbersome, but the ability to pipe the dump output straight into restore with the “|”
symbol requires enhancements to dump. An additional flag, -s, is added to restore to
request a table of contents that includes the owner of each file. The -s flag takes an argu-
ment, the filesystem mount point, which is needed to complete the path name of each file
on the dump so that the owner can be determined. The catalog files are compressed with
gzip and written to /wrk/dump_catalogs. The files are also marked with expiration dates so
that obsolete ones can be removed on a regular basis.

The urestore command is simple line-oriented program that can be run from any terminal
or workstation and does not require any graphics capability. When it is finished receiving
input from the user, it spawns a script, running as root, into the background and termi-
nates. This script initiates, in series, as many restore commands as are required to reload
the requested files. It also writes a file into the directory /usr/spool/urestore for use during
boot if the system goes down while the restore is in progress. The script removes the file
when restore completes. As a final step, the script checks for migrated files that have been
restored and does a dmput of each one to re-establish handles for soft-deleted files.

During the user input phase of urestore, the program determines the set of files to be
restored and makes sure the user owns them. The requested files are searched for in the
dump catalogs that reside in the /wrk/dump_catalogs subdirectory corresponding to the
appropriate filesystem(s). These catalogs, of course, are uncompressed using gunzip
before being searched

The script launched by urestore has limits built into it to prevent too many restores taking

Advancing with UNICOS Toward IRIX June 9, 1998 30

place at once. These limits are implemented through lock files in the /usr/spool/urestore
directory. The limits are one per file system and three total. In addition, file systems with
restores in progress are monitored for low-space conditions. Any restores in progress
when a file system falls below the critical level as displayed by fsmon are suspended until
the free-space reaches 5% above the critical level.

The startup script /etc/rc.pst is modified to launch a script which looks in /usr/spool/ure-
store for incomplete restores and relaunches them. This script first removes any files cre-
ated by incomplete restores so that the restore will start off with a clean slate. Migrated
files which were restored before the system interruption can cause a problem if they are
left around when a second identical restore is started. This startup script waits 15 minutes
after a boot before initiating any restores and also waits until the NQS queues are on and
some tape drives are configured up.

The following provides possible problems and benefits with this feature.

The dump catalogs which are kept on /wrk (site specific file system) may be of substantial
size even with compression. The disk space they consume should be closely monitored to
be make sure it stays within acceptable limits.

There may be substantial time consumed by uncompressing the dump catalogs and scan-
ning them for the requested files, especially if more than one catalog has to be scanned.
Nevertheless, this is bound to be better than having no catalogs at all and having to guess
what is on the tapes.

The method used for launching the actual restores (a separate script running as root)
means that the restores will be done in a different UNICOS session than the one that exe-
cuted the urestore command. This results in the user not getting charged for the resources
used by the restores. This is unfortunate, but not a serious problem

The method used for creating dump catalogs requires that the file systems be mounted
while dumps are being taken. This may or may not present a problem for a site.

Once a restore operation has been spun off by the user interface, the user will no longer
have control of it. There is no way he can cancel it. Intentionally killing a running restore
and having to clean up partially restored files is not an appealing idea.

The existence of dump catalogs makes it possible to offer the user a facility for listing all
of the files they have on dump tapes. The implementation of such a facility is not con-
tained in this design but should be considered at a later date.

gzip and gunzip are GNU software and not part of the standard UNICOS system. There
may be some difficulty in gaining the necessary permission to install them and make them
part of the offering. However, tests have shown that they do a much better job, both in
terms of cpu time and degree of compression, than either pack or compress, and are there-
fore ideally suited for this feature.

This design assumes that the necessary dump tapes are always on site as apposed to say,

Advancing with UNICOS Toward IRIX June 9, 1998 31

being located in a remote tape vault (for example, remote tape vaults used for disaster
recovery purposes).

On the average, over the years, our users have used this feature 3 times per week.

We think this feature would be a useful addition to IRIX.

3.17 SDS and Ldcache Automatic Re-Configuration

The SSD solid-state storage device is a high-speed secondary memory. Data can be trans-
ferred between SSD and central memory at rates approaching 6500 Mbytes/sec using 4
VHisp channels. The SSD is an expensive piece of hardware and its investment needs pro-
tection by making its use efficient. Its capabilities provide i/o intensive codes with excel-
lent performance allowing them to perform time critical work to meet demanding
production schedules.

Programs use the SSD explicitly as SDS which is a particular way of configuring the SSD.
The SSD can be configured as a disk device and/or as a secondary data storage (SDS)
device. In addition the SDS can be further partitioned into cache (Ldcache) for disk resi-
dent file systems. While SSD configurations used for disk devices are static (meaning a re-
boot is required to change its configuration), those for SDS are not. The SDS can be con-
figured dynamically and partitioned into user accessible SSD (i.e., SDS) and file system
cache (i.e., Ldcache). Usage of SDS as Ldcache can benefit certain i/o intensive programs
in a transparent manner.

Today our SSD is used for swapping (swap partition 0), user accessible SDS, and
Ldcache. As one might imagine, the SDS is not always fully utilized whereas the Ldcache
is in constant use. If, while the user accessible SDS is under utilized, more Ldcache were
to be configured overall system i/o efficiency improvements may be obtained.

With the above in mind, we undertook a project to determine if there were indeed any ben-
efits in dynamically reconfiguring the SSD device.

The approach taken involved gather and reviewing statistical historic data related to the
amount of i/o traffic to the file systems followed by an evaluation report which reported
the necessary changes to administer the SSD dynamic configuration and what the effect of
this was in terms of increased machine throughput. The remainder of this Section presents
the Evaluation report which includes some of the implementation and design and issues.

3.17.1 Evaluation report

The evaluation period was conducted over a period of four months (Aug - Nov 1996). The
automatic configuration of Ldcache was performed only for our scratch file system; also
known as the TMPDIR (/dev/dsk/work). User file systems were not included in the evalu-
ation as a precautionary measure against file system damage that may have resulted from
unscheduled system interruptions (i.e., our system was experiencing reliability problems).

Advancing with UNICOS Toward IRIX June 9, 1998 32

The existing Ldcache configuration was shared among several of our file systems such as /
root, /usr, /usr/spool, /local, and /work. We also at times would Ldcache the /usr/dmf (the
DMF data base file system) to speedup the DMF process.

Prior to the evaluation the TMPDIR file system was configured with a static Ldcache size
of approximately 40 Mwords. This configuration was changed to be dynamic in that the
Ldcache size for TMPDIR was re-sized or re-examined every seven minutes with the
intent of making the TMPDIR Ldcache have the lowest address of all file system
Ldcaches. The lowest address was essential for allowing the TMPDIR Ldcache to be re-
sized without having to relocated any other file system’s Ldcache (an expensive opera-
tion). The TMPDIR Ldcache size was allowed to vary from a minimum of 40 Mwords and
up to a maximum of approximately 1150 Mwords. The maximum value was set to always
allow the largest user job SDS request of 700 Mwords to be immediately satisfied.
Although this meant that as much as 700 Mwords of SDS could be unused at times when
no user SDS requests existed, it precluded the necessity for developing sophisticated soft-
ware to scan the NQS job input queue for SDS jobs and hold them while Ldcache for
TMPDIR was re-sized. One other adjustment to the SDS auto configuration for TMPDIR,
that had not been envisioned, was that it became essential to always provide a pad between
what the users were actually using and the upper bound of the TMPDIR Ldcache. This
allowed users’ SDS arenas to expand immediately without being pre-empted, which is an
expensive system operations in that it consumes large portions of the swap device and
impacts the effective system swapping bandwidth, delays user SDS jobs unnecessarily,
and can cause severe swap space fragmentation problems. The optimum pad size was
determined to be 100 Mwords.

It was found that as user SDS jobs came and went and with others adjusting their SDS
arena sizes, the SDS could become fragmented even though the system is designed to min-
imize this via the kernel SDS gravity-packing algorithm. To overcome this, a special pro-
gram was developed that when executed would kick-start the kernel SDS gravity-packing
algorithm to pack the users’ SDS arenas prior to making adjustments to the TMPDIR
Ldcache size. This technique has shown itself to work well.

Another unforeseen problem area was related to the releasing of operator held SDS jobs
(ones held via the qmgr hold directives). If, when an SDS job (done automatically by the
NQS dynamic scheduler described in a following Section) is released, the SDS physical
space needed by the job was not available due say to the TMPDIR Ldcache size, then it
would stay in “checkpoint” state and never be restarted. To avoid this situation a special
interface was developed within the SDS auto configuration software to allow the TMPDIR
Ldcache size to be minimized to 40 Mwords upon request and subsequently instructed to
begin normal operations again at a later time. This technique has been shown to solve the
problem.

The statistical data gathered from the historical sar data showed that most physical i/o to
and from the TMPDIR file system were reads. The ratio between read and writes was
approximately 2:1. A special TMPDIR Ldcache configuration was setup to determine to
what extent the reads could be satisfied from Ldcache. It was found that much of the data

Advancing with UNICOS Toward IRIX June 9, 1998 33

read from TMPDIR was read multiple times; this is ideal for a cache. With this in mind,
the TMPDIR Ldcache was always configured to provide 4 times more Ldcache for reads
than for writes (i.e., use of ldcache -h high, low was employed here).

Much effort was given to determine what Ldcache and physical i/o data to gather in order
to find out the effectiveness of the new dynamic Ldcache for TMPDIR. The five minute
sar sampled data was deemed to be so volatile that little could be learned. The re-read and
re-write ratios ranged from 1.0 to thousands from one sample to the next. The most rea-
sonable data collection period turned out to be monthly. This allowed the data to be pre-
sented in a more digestible form and provided an excellent indication of the SDS auto
reconfiguration effectiveness in reducing the amount of physical i/o.

The monthly physical i/o for TMPDIR was plotted from February 1996 to March 1997. It
showed that physical read i/o has been dramatically reduced starting with August 1996;
the start of the evaluation period. This reduction held throughout the evaluation period and
continues today.

One piece of data that would categorically indicate the usefulness of the SDS auto recon-
figuration is the i/o wait time. Unfortunately this cannot be separated out for an individual
file system such as TMPDIR. Thus we are left with the grand total for i/o wait time which
is not useful as the total i/o is dominated by users’ SDS i/o which typically is 100 times
greater than any other form of i/o.

The assumption is made that if physical read and writes to TMPDIR can be satisfied from
the Ldcache then i/o wait times are reduced. Our technology folks do not disputed this
assertion.

An added bonus from this new Ldcache automatic configuration was realized when the file
systems /tmp and /usr/tmp were eliminated and replaced with symbolic links to directories
in the TMPDIR file system. These two file systems now enjoy the same Ldcache benefits
as the TMPDIR file system.

The re-read and re-write Ldcache cache-to-disk ratios for TMPDIR prior to the evaluation
averaged around 4.0 for reads and 1.0+ for writes. Today, these same two ratios are aver-
aging 30.0 and 4.0 with the re-read cache-to-disk ratio hitting 200-300 at times. During the
early part of 1996 the physical i/o to the TMPDIR disk was around 22 Terabytes per
month. Today it averages around 7 Terabytes per month with the same kind of workload.
This obviously has many benefits not only for system throughput but also on the physical
stress imposed on the disks themselves

The logic for performing the SDS auto reconfiguration is done entirely by our Health
Monitoring System (HMS) chkldcache script, which is described some in Section 3.24.
This HMS script provides various informative log messages describing the actions it
takes. These messages provide a feed-back loop for making improvements to the overall
scheme.

Advancing with UNICOS Toward IRIX June 9, 1998 34

3.17.2 Some further work or evaluations that could be conducted

1. Explore extending SDS Ldcache auto configuration to user file systems.
2. Explore ways to make use of all SDS space when no user SDS requests present.
3. Explore ways to adjust read/write SDS Ldcache partitioning using ldcache -h option.
4. Use a Benchmark Suite to evaluate various SDS Ldcache auto reconfigurations.

3.17.3 Concluding remarks

The Ldcache auto re-configuration has been shown to be effective in using what would be
otherwise an expensive idle component of the system. With this facility, non-SDS users
can now share the fast (and reusable) i/o characteristics of SDS with those employing SDS
explicitly. The assertion is that overall i/o wait times are reduced with a corresponding
improvement in system workload throughput. This assertion is largely support by sar data
that showed i/o wait times have been dramatically reduced as compared to those prior to
this enhancement.

3.18 Remote Shell (remsh) Enhancements

We find there is a large number of NQS jobs employing remsh during their termination
phases. This is done for a number of reasons, the primary one being to simply notify the
job owner of the job’s completion status. Another is to actually provide a interaction
between the NQS job and the owner executing on their workstation. While this operation
may seem reasonable and simple, it does have serious adverse affects.

For example, if the remote shell hangs due to a remote system problem or if there is no one
present at the remote system to respond interactively to some required action it can cause:

• Prolonged occupancy of an NQS execution slot (1-48 hrs had been observed)

• Job checkpoint failure when NQS system shutdown (Error 137 - open socket)

• Unnecessary job reruns due to checkpoint failures

• Overall work turn-around degraded

• Global NQS resources such as memory and SDS held longer than necessary

• Delayed job accounting which skews performance and capacity analysis

• Inefficient and non-productive use of data center time and labor

To deal with these problems the remsh was front-ended with a special script. The real
remsh was renamed and the front-end script named remsh having rsh as a hard link. This
design provided a transparent facility for intercepting the users’ remsh so that an optional
time-out could be inserted and for enabling a system shutdown signal to be caught. The
time-out is used to deal with the case when remsh hangs unintentionally for too long on
the remote system. By catching a system NQS shutdown signal the job can be successfully
checkpointed and resumed by rescinding the remsh at shutdown and reinstating it during
NQS recovery.

Advancing with UNICOS Toward IRIX June 9, 1998 35

The default time-out is set to 1800 seconds and can be overridden by user with the envi-
ronment variable REMSH_TIMEOUT. Additionally, the user can specify an executable
file to be called when the shutdown signal is caught.

The enhancement to remsh solved the problems mentioned above.

This feature is view as being a useful addition to IRIX.

3.19 Memory Scheduling Enhancements

The UNICOS memory scheduling has a more dramatic influence on interactive work than
its batch counterpart. NQS is used to schedule new batch work into the system for execu-
tion. Beyond this, NQS has no real control over this workload and the management, or
performance of this work falls to the OS memory scheduling software. This OS software is
tunable via the nschedv command.

After some years of struggling with the nschedv controls with limited success, and with
the advent of our engineers requiring to run large memory interactive codes, we undertook
the project of improving the OS memory scheduling to manage the evolving interactive
and batch workload requirements.

This feature is covered in detail in another paper “The Age-Old Question of How to Bal-
ance Batch and Interactive” presented during the Stuttgart CUG 1998. The reader is
directed to this paper for further information on this enhancement.

The requirement for easily balancing batch and interactive workloads is also needed for
IRIX, especially on the Origin2000 system as it is far more likely it will have to deal with
these workloads simultaneously while serving as a central shared computing resource.

3.20 Dynamic NQS Scheduler

The Dynamic NQS Scheduler provides a tool for controlling the initiation of NQS jobs
based on priority. It allows control of multiple NQS queues and complexes, with a mix of
different priorities in each queue or complex. This allows for better control of turnaround
based on job priority.

The Dynamic NQS Scheduler is implemented as a single command, nqsched, and a num-
ber of associated parameter files. nqsched operates by reading output from the qstat com-
mand, doing some computations based on its parameter files, and generating a number of
qmgr directives. nqsched supports daemon mode, where both qstat and the qmgr com-
mands are executed internally. It can also be run as a filter, accepting a qstat report as its
input and generating qmgr directives as its output.

NQS input requests are categorized by request-priority into a small number (3) of “priori-
ties”. These priorities are “CR”, “ME”, and “LO”. Jobs have an associated turnaround
level of “A”, “B”, and “C”. Only jobs with levels “A” and “B” are considered to be “CR”

Advancing with UNICOS Toward IRIX June 9, 1998 36

or “ME” priority by nqsched. All level “C” work is considered to be “LO” for scheduling
purposes.

nqsched supports control of queues, complexes, and groups. Queues and complexes corre-
spond to their NQS counterparts, while a group is simply an arbitrary collection of queues
or complexes. While nqsched cannot control a group directly, the nqsched “pro-rating”
(see below) can be used to allow control of group members. The queues, complexes, and
groups which nqsched controls are based on its parameter files. In particular, the nqsched
definition of complexes should match the NQS complex definitions.

The nqsched’s internal computations are based on a number of factors. For a given queue
or complex, the computed limit is dependent on the following:

1. Factors from qstat report (dynamic)

-Number of jobs in execution
-Number of “CR”, “ME”, and “LO” priority jobs in input

2. Factors from parameter files (static)

-Minimum and maximum limit for queue
-Max limit if no “CR” jobs
-Max limit if no “CR” or “ME” jobs
-Weights for “CR”, “ME”, and “LO” jobs
-General input job weighting factor

The limit for a given queue, complex, or group is computed in two stages. First, a weight
is computed as follows:

wt = #_of_running_jobs +
#_of_LO_jobs * general_wt * LO_wt +
#_of_ME_jobs * general_wt * ME_wt +
#_of_CR_jobs * general_wt * CR_wt

Then the maximum and minimum limits are applied to the calculated weight and a limit
for the queue/complex is determined.

The pro-rating option allows the computed limit for a complex or group to be distributed
over the members of that complex or group. To prorate over a group, first the group’s limit
is computed. Then the weights of each of the groups members is computed. Finally, the
group’s limit is apportioned over the members of the group, based on each member’s com-
puted weight. Prorating of a complex is done in a similar fashion. Prorating allows fine
control over which queues receive execution slots, while providing global control over the
total number of jobs running in the complex or group.

The nqsched daemon mode operates as follows:

Internally run qstat

Advancing with UNICOS Toward IRIX June 9, 1998 37

Calculate new limits
Internally run qmgr to set new limits
Sleep for an interval
<repeat>

Differing parameter files are needed over the course of a day. For example, LO jobs will be
weighted more heavily during off-shift, and LO maximum limits will be relaxed as well.
To provide an easy transition from one nqsched to the next, a simple rule is implemented -
the most recently launched nqsched is the “real daemon”, and any other will terminate
automatically. This is achieved by means of an interlock file, which contains the process id
of the most recently launched nqsched. This scheme allows a new copy of nqsched to be
launched by cron, or by other means, without having to locate and explicitly signal the old
copy of nqsched.

3.21 System Panic Damage Control

Sudden system panics can cause a great deal of distress. This feature is designed to pro-
vide:

• Flushing of both system buffer cache (/bin/sync) and logical device cache (/etc/ldsync)

• A ‘speedy’ reboot of the system following the panic

• Notification to users on the system at the time of the system panic

The first bulleted item above is now provided by the vendor. The ‘speedy’ reboot is
achieved mainly by having a recovery document that instructs a recovery analyst how to
reboot the system following a system crash. This document is invaluable to the person
who infrequently performs this activity.

Notification to users is paramount as data files could be lost or corrupted which will
require the user to take special actions to recover their work correctly.

Immediately after the system reboot a program/script scans the lost+found directories in
each file system and mails a notice to the owner informing them of lost files. Lost files are
not moved to the user’s home directory since this could possibly cause the file system con-
taining the home directory to be exhausted. Instead, these lost files remain in their respec-
tive lost+found directories but under a hidden subdirectory. By moving them to a hidden
subdirectory they will not interfere with subsequent system panics. The owner of the files
are informed of the file location and that they will be retained for N days. After N days the
files are removed.

Interactive users at the time of the system panic are informed that the system paniced.
During the reboot while in single-user mode the /etc/utmp is saved as it is newly created
by /etc/init when going to multi-user mode. When in multi-user mode the saved /etc/utmp
is processed and all interactive users are mailed their notifications.

Advancing with UNICOS Toward IRIX June 9, 1998 38

3.22 System Testing Environment

When the UNICOS system is taken out of production for new system testing or QAing, it
is necessary to preserve the production state. Preserving production is achieved by check-
pointing all NQS executing work and saving the checkpoint files and any queued jobs on
disk. When the new system is brought up on the machine, a special NQS configuration is
needed to avoid production work from being restarted. There are other known things, such
as cron, accounting, and accessing/modifying files that were in use be checkpointed pro-
duction jobs that should also be considered to avoid the testing from interfering with the
production activities. This feature provides all necessary things to safe guard the produc-
tion state.

This feature is covered in detail in another paper “The Good, the Bad, and the Ugly
Aspects of Installing New OS Releases” presented at the Stuttgart CUG 1998.

3.23 File Expiration

This feature describes a scheme for implementing file expiration which was first intro-
duced under UNICOS 7. It used an expiration timestamp stored in the inode site bits.
Commands for displaying, altering or selecting files by time were extended to include
expiration time. A script is run periodically to do the actual removal of expired files. This
feature is primarily aimed at allowing users to easily designate when files have outlived
their usefulness and can be automatically removed, thus reducing storage charges.

The functional requirements were as follows.

• Users must have the capability of specifying an expiration time for each file they own.

• All commands which can be used to display file times need to be modified to include
expiration time.

• The find(1) command need to be modified to allow selection of files by expiration time.

• It must be easy to add or subtract file types and file systems from those affected by
expiration.

• The script to remove expired files should be relatively simple and easy to modify to
accommodate other selection schemes.

• The script which removes expired files must keep a log of all activities including any
failures to remove a file and other errors.

File expirations are implemented by using the site bits in the file inode. Cray has reserved
one word (64 bits) in the inode for sites to make use of in any manner they choose. Fifteen
bits of this word is used to store the expiration date expressed as days after June 1, 1994.
Where possible, it is treated like the other three times already maintained for each file: the
last change time, last modification time and last access time. Unfortunately, the only
mechanism Cray provided for manipulating the sites bits is the fcntl(2) system call. This
call requires an open file descriptor. Thus, updating the expiration time on a migrated file
would require recalling it in order to open it. Since this is considered completely unaccept-

Advancing with UNICOS Toward IRIX June 9, 1998 39

able, a system call was needed to the kernel which allowed modifying the file expiration
without opening the file. Cray provided a user exit for sites to add their own system call,
beginning with UNICOS 8.0. Cray also planned to add a system call for generalized inode
changes sometime later in 8.0. Cray did deliver this, so today this code is used instead and
the kernel modifications introduced under UNICOS 7 is now discarded. Another slight
oversight on Cray’s part was the failure to have restore(8) maintain the sites bits when a
file is restored. The system call for modifying a file’s site bits is added to restore(8) to cor-
rect this defect.

The fcntl(2) mechanism provided for site bit manipulation is not be used at all.

A scheme similar to the one described in this design was implemented at Shell UK (now
Shell Common Information Services). The developer, Andy Haxby, provided Boeing with
the code as well as a copy of a paper he delivered at CUG describing the scheme and their
experiences with it. A great deal of thanks are due to Andy for his help in getting this fea-
ture started and pointing out the likely pitfalls.

Since the file expiration is treated like the other three file times as much as possible, any
command which allows the user to display or explicitly alter these times is modified to
include expiration time. These commands are ls(1), find(1), touch(1), and fck(1). Until
UNICOS 8.0, there were two different versions of ls(1), both of which were be modified.
The letter x was chosen to signify expiration for the modified commands. Thus, to list
expiration times for all files in a directory, the command is

ls -lX

Files that have no expiration date have “Indefinite” displayed in the date column. Sorted
output, i.e., the output from ls -lXt, lists files without expiration dates last. To find all files
expiring more than n days from now, one would enter

find . -xtime +n -print

To find all files with expiration dates, one would enter

find . -expire -print

The only command the user will have for specifying file expiration is touch(1). The syntax
is

touch -x [time] file

where time is specified as mmddhhmm[yy]. If time is omitted, the expiration is set to
indefinite. Alternatively, the user can specify

touch -X [days] file

where days is the number of days from now when the file is to expire. If days is omitted, it

Advancing with UNICOS Toward IRIX June 9, 1998 40

defaults to 0, setting the expiration to indefinite. If the named file does not exist, it is cre-
ated. Only the file owner or the superuser are able to change a file’s expiration.

As mentioned, above, fck(1) is modified to display expiration. It displays expiration auto-
matically if one exists, so no flag requesting is needed.

As previously mentioned, the key element in this design is a new system call which sets
inode site bits. The kernel user exit introduced with UNICOS 8.0, uesyscall(2), was back-
stitched into 7.0 to accomplish this. This system call provides for multiple uses by specify-
ing a sub-system call number, a list of which is maintained in the include file uex.h. The
call for modifying inode side bits will be known as SETSBITS. The system call will allow
for modifying only a portion of the site bits, but no formal structure definition will be used
in order to avoid changing any existing kernel code.

Both touch(1) and restore(8) will be modified to include this system call. The modifica-
tions to ls(1), find(1), fck(1), and nc1pfextr(1) should be straightforward and will like-
wise parallel existing code wherever possible.

A script is run daily which removes expired files. Files are removed as soon as reasonably
possible after expiration, usually within 24 hours. This runs the risk of no accurate backup
of the file existing if it was modified shortly before removal, but it was decided that expir-
ing the file when the user specified and precluding any additional storage charges were
more important. The script of course keeps a log of all files removed including the owner,
size, time of removal, and time of last modification. This should make it relatively simple
to locate the correct dump tape should the user request that the file be restored.

A user has the capability to put an acl on a directory denying write permission to root.
Should this happen, no extra measures are taken to circumvent the problem; the file will
simply not be removed.

File expiration applies to all types of files including directories, which of course have to be
empty to qualify. The expiration script only runs on user file systems. Attempts to place
file expirations on other user accessible filesystems such as /tmp, /usr/tmp and /wrk are
accepted but have no affect. Such files continue to be removed on a regular basis as they
always have. An attempt to place an expiration date on a file on an NFS filesystem will
result in an error.

The initial implementation was on a strictly voluntary basis. That is, only files that have an
expiration date that the owner has added will be expired. Future changes could include an
expiration scheme based on last modification or access time, wherein the expiration date
would be used to prevent a file’s removal after a period of no use. Changes such as this can
be achieved by modifying the removal script only; no changes to system code will be
required.

The problems associated with this feature are as follows.

The concept of making expiration time the same as the other three times associated with a

Advancing with UNICOS Toward IRIX June 9, 1998 41

file breaks down at some point because not all files have expiration dates whereas the other
three dates are attributes of all files. The solutions contained in this design for handling
files without expiration dates are somewhat clumsy at best.

It would be unwise to expect very much disk space or very many DMF tapes to be freed up
by this scheme. The Shell UK folks, using a more coercive scheme than what is proposed
here, noticed an initial benefit, but that disappeared within a few months.

The real benefit comes from providing the users with a means for having files discarded
automatically at a preset future date. For example, an engineer knows that support data for
some design analysis needs to be kept ONLY for 2 years. This engineer may leave the
company!

This feature needs to be part of IRIX.

3.24 System Health Monitoring and Automated Recovery Strategies

When Boeing introduced UNICOS 5.1 back in 1989 there were many unanswered ques-
tions about its reliability and robustness. Although we have seen a steady improvement in
the UNICOS OS since then, the same cannot be said for some of its sub-components.
Some of these sub components still pose problems for us today. During this time since
1989 we have developed a Health Monitoring System (HMS). The very first task for HMS
was for managing the quirks of the NQS quickfile daemon; namely qfdaemon, which
repeatedly would get itself into a cpu loop. This stole precious cpu cycles and stopped all
SDS scheduling tasks causing very long job delays. From this one simple script, HMS has
grown to over 36,000 lines spread among some 70 script files and a handful of small
‘helper’ programs. HMS maintains log files that not only indicate its findings and correc-
tive actions, but also abnormal system behavior according to rule-sets. This data has
proved to be immensely useful for post analysis of problems and simply for understanding
normal system behavior so that the rule-sets can be improved.

We are asked frequently about the resources consumed by HMS. It turns out that on our
T916/16512 system today HMS consumes, on the average, about 1 CPU-hour per day
(that is only ~0.3% of the machine). All the benefits HMS provides us with are well worth
this expense.

Some thoughts recently have been for integrating HMS concepts into the UNICOS Auto-
matic Incident Reporting (AIR) facility. This may very well have been done, but with the
recent T90P cancellation any further investment(s) need careful examination at this time.

HMS is not a static entity. It, by the very nature of new problems or situations thought to
be impossible or unthinkable that arise almost every day, undergoes frequent enhance-
ments. The sysedit feature described elsewhere in this paper helps with this administrative
task.

Interestingly enough, the concept of an HMS has spread to other compute servers within
the Boeing central data center based on the successes we have seen with it on UNICOS.

Advancing with UNICOS Toward IRIX June 9, 1998 42

Whenever a new compute server service is being installed one always sees HMS as an
early project.

HMS has provided us with a facility that greatly reduces the need for highly skilled people
to continually monitor system activity for anomalies, and has in many cases provided
automatic early detection of problems triggering recovery processes. Overall, HMS has
been instrumental in helping with our efforts to improve the service quality and availabil-
ity in a cost effective manner.

The primary goal and approach philosophy established for HMS were (and still are) as fol-
lows.

• Goal

Provide an unattended and fully functioning system at all times

• Approaches

Use shell scripts rather than program software to detect system failures
Use predictive techniques to avoid system failures
Emphasis placed on automatic corrective actions rather than simply reporting
Log and report normal and perceived abnormal system behavior for analysis

There have been other CUG papers written on the automatic supervision of UNICOS in
the past. All have addressed specific issues that help with promoting the concept of run-
ning the UNICOS system without requiring human intervention. The paper “Automatic
Supervision of CRAY UNICOS Systems” by N. Attig, V. Sander, L. Wollschlager (KFA
Germany) and R. Krotz (Cray Research GmbH, Germany) is a very good example. These
papers, in general, concentrated on very narrow areas of system supervision such as sys-
tem reboots or shutdowns, and automatic shutdowns triggered by unrecoverable hardware
errors occurring on memory or disk. I suspect that these efforts have since been expanded
to cover more system anomalies. The point being made here, is that there is evidence that
the automatic supervision of UNICOS is considered a critical need by many. Obviously
there is a need for such supervision which I suspect is driven as much by individual self-
ishness as by the more acceptable need to minimize service degrades.

Boeing’s HMS design philosophy is to execute ‘quietly’, correcting anomalous situations
where ever possible, and only reverting to requiring human intervention when all correc-
tive actions seem to be failing. The ideal would be for HMS to always know how to correct
errors without ever having to resort to ‘outside’ help.

HMS is managed by a script file launched at system boot time. This script establishes the
HMS environment and then enters a periodic loop during which it dispatches other scripts
to perform specific ‘health checks’. HMS can be, at any time, be placed into a sleep state,
woken up from a sleep state, terminated, or restarted. A logfile is maintained by HMS
which records all findings and recovery actions. These log files are maintained on a daily

Advancing with UNICOS Toward IRIX June 9, 1998 43

and monthly basis which rotate on a twelve-monthly basis. That is, there will always be
one years worth of logfile data at any time. Typical logfile messages are shown below.

05/29/98 06:17:14 chkhardware: CPUs configured for i/o are 9 10 11
05/29/98 06:17:21 chksds: scanning /usr/adm/urm/Urm.980529 for urmd internal error
05/29/98 06:17:28 get_nqs_q_states: NQS BATCH queue Mlg_Ngt status_state changed to ’off’
05/29/98 06:17:29 get_nqs_q_states: NQS BATCH queue Mvl_Ngt status_state changed to ’off’
05/29/98 06:25:03 chknschedv: setting hog_max_mem <860160>blks for non-prime time
05/29/98 06:30:40 chkhardware: 1 CPUs missing from i/o cpu set - should be 4 i/o capable CPUs
05/29/98 06:30:43 chkldcache: SDS and Ldcache completely packed
05/29/98 06:30:45 chkldcache: no processes found using SDS

As the normal daily HMS logfile can contain many informative messages we found the
need to augment the logging with another log which contained the important alert mes-
sages. The /usr/adm/syslog/HMSalerts_log was facilitated by making entries in the sys-
logd configuration file /etc/syslog.conf and using the /usr/bin/logger command to make the
required HMS alert log message entries.

Our HMS software is contained on a PL and an hms.mk file is used to build and install the
software ready for execution after modifications to the /etc/rc.pst and /etc/shutdown.pre
have been made. HMS initiates from of /etc/rc.pst and shutdown from /etc/shutdown.pre.

HMS acts differently when run under ‘production-mode’ vs. ‘QA test-mode’. This is done
to avoid production files used by HMS from being disturbed by QA activities.

As mentioned above, HMS is large in terms of the number of shell scripts, and it is not
possible to described all their actions in the context of this paper. However, the following
list is provided to give the reader some idea of what HMS monitors, controls, and reports
on.

• Starts all NQS queues during system startup ONLY after certain criteria has been met
such as having tapes configured and available

• Reports on NQS job checkpoints and recovery status after system startup

• Captures NQS queue states so that same states preserved across system shutdowns

• Configures the tape subsystem; recovers tape subsystem if it fails

• Captures tape drive states so that same states preserved across system shutdowns

• Monitor and report on hardware configuration immediately after system startup such as
number of active CPUs and CPU mode flag settings

• Reports if CPU downed automatically by system (i.e., CPU not exchanging in 30 secs)

• Monitor/validate cron entry updates - recovers from an erroneous update

• Verifies SSD configuration; validates SSD Vhisp settings; monitors URM behavior

• Ensures /etc/nschedv settings are correct; adjusts them per rule-sets

• Ensures sufficient user memory is available - warns if insufficient available

Advancing with UNICOS Toward IRIX June 9, 1998 44

• Validate disk state and read/write modes; monitors disk errors; reports on jobs sus-
pended due to unrecoverable disk errors

• Suspend NQS queues if disk space runs low; restart queues after problem resolved

• Makes predictions based on disk space usage rates for when disk space will be below a
critical threshold - very useful in preventing catastrophes

• Verifies that correct file systems are mounted

• Verifies file ownership and permissions for top-level file system trees; if invalid NQS
will be stopped until problem corrected

• Monitors the user command directories to ensure nothing is missing

• Monitor for correct behavior of system demons - stops/restart them as necessary

• Tracks and modifies Ldcache based on SDS usage

• Monitor network resources such as mbufs and mbuf denials

• System date/time checks

• Compute and reports disk/filesystem working set space - typical report shown below.

File Workspace # reg files Workspace # reg files Workspace
System Size (GB) in Workspace files % in filesystem Ratio
------ --------- ------------ --------- ------------- ---------

 u 20.278854 34790 2.830% 1229527 0.840
 u1 6.427071 1715 0.420% 408040 0.533
 u2 8.491650 5551 1.030% 537052 0.704
 u3 21.227905 19188 4.510% 425835 1.760
 big 88.715290 519 0.710% 73001 1.439
 i 4.412514 4126 2.000% 206172 0.732

Top 90% usage of 7-day workspace for /u

Workspace # reg files Workspace # regular User
Size (GB) in Workspace files (%) files owned Names
--------- ------------ --------- ----------- -------

 7.001152 684 2.06% 33238 abc1234
 1.555645 1352 2.14% 63302 xyz4321
 1.548332 22193 46.69% 47533 dce9876
 0.988781 1588 9.40% 16887 opq4567

• Report/Warn on file system inode usage rates - typical report shown below.

A-O-K --->201 days remain before depleting i-nodes for /u
 Action required: None

A-O-K --->562 days remain before depleting i-nodes for /u1
 Action required: None

A-O-K --->527 days remain before depleting i-nodes for /u2
 Action required: None

A-O-K --->33 days remain before depleting i-nodes for /u3
 Action required: None

Advancing with UNICOS Toward IRIX June 9, 1998 45

A-O-K --->1591 days remain before depleting i-nodes for /big
 Action required: None

A-O-K --->204 days remain before depleting i-nodes for /i
 Action required: None

It is true to say that HMS on UNICOS has reached the state in its evolution that today our
support analysts look to HMS for providing strong indications the system is operating cor-
rectly. The HMS log is typically viewed for signs of trouble immediately after system
boot. This surely is a good sign that HMS has indeed been worthwhile.

Should SGI/Cray provide HMS-type software ? Probably not, as every customer site will
have its own ideas as to what constitutes ‘system health’. However, a similar feature to the
UNICOS AIR facility would make an excellent foundation in IRIX for sites wishing to
develop their own HMS facility.

4.0 Summary

The basic UNICOS system has evolved over the years and now offers a rich set of features
to allow a site, such as Boeing, to come close to successfully administering a centrally
located shared computing facility such as the T916. We have found that it is still necessary
to refine these as well as adding our own ones in order to satisfy our unique requirements.
As with UNICOS maturing over the years, so have our local enhancements also matured,
and we now have a system that requires very little attention on a day-to-day basis. That is
not say there is nothing more to do. Our system continues to mature from one problem to
the next with the MTTP getting larger and larger!

With UNICOS 10 being the last UNICOS major release it will be difficult to convince
SGI/Cray to add more features or to refine existing ones based on customer inputs.

One thing has become crystal clear to me over the years. Experience with dealing with
vendors is that they are loathed (maybe this is too strong a word) to spend too much time
refining their software to meet every last request from their customers. Understandably, it
is expensive for them to do so. This leaves an individual site, wanting additions to the sys-
tem, in a difficult position. Much of this difficulty can be reduced if the system source
code is available to them. With this, they can immediately make their own changes while
also pursuing the vendor to make like changes (providing the vendor with the code
changes can help with this endeavor). Adding features in this fashion however, needs to be
done with great care as the long term maintenance of the local code can become very bur-
densome. Source code also provides another benefit. When problems arise or if a site
needs to make enhancements, the source code provides an experienced person with the
necessary information to understand and resolve problems or to arrive at a good design for
the enhancements. Without the source code these things become almost impossible to
carry out, and the site is at the mercy of the vendor.

Advancing with UNICOS Toward IRIX June 9, 1998 46

The user exits provided in TMF with UNICOS 10 is a win-win situation. SGI/Cray should
explore this idea to its fullest extent in IRIX.

My hope is that other member sites will strongly encourage SGI/Cray to give importance
to their own requirements and to have them incorporated into the IRIX system as it is
developed to manage our future products such as SN2 and SV2.

5.0 Acknowledgments

Much of the background material given in this paper came from my associates at Boeing
within the Technical Services organization. I wish to extend my thanks to them all in pro-
viding their insights and for their aging and dust covered design documents. In particular I
want to thank Mark Lutz and Bill Matson for putting up with all my questions that no
doubt stretched their memories, and patience, at times.

