

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 1

The Age-Old Question of How to Balance
Batch and Interactive

Barry Sharp
Boeing Shared Services Group - Technical Services

High Performance Computing - Engineering Operating Systems
The Boeing Company, P.O. Box 3707 MC 7J-04, Seattle, WA 98124-2207, USA

barry.sharp@boeing.com

Copyright (c) 1998, The Boeing Company, all rights reserved

Abstract

The UNICOS system is designed with both batch and interactive workload requirements
in mind. However, in practice, the vanilla UNICOS kernel memory scheduler struggles to
adequately balance these two distinct workloads, even with its wealth of scheduler tuning
parameters. This paper presents a simple modification to the kernel-level memory sched-
uler that works harmoniously with the vanilla system to simplify the process of balancing
the two workloads.

1.0 Introduction

The UNICOS software allows a site to tailor the system to schedule work activities so that
desired throughput and/or performance goals can be met. The tailoring can be performed
at system startup or dynamically during production to handle changing conditions or sim-
ply done at preset times of the day, such as daytime versus nighttime. The tailoring
instructions are transmitted to the OS kernel software using the

nschedv

 command. UNI-
COS also provides a Job Category feature that allows control over where process memory
images are placed on the swap device (SWAPDEV). This SWAPDEV placement strategy
is tightly coupled with the work scheduling. It is important to note that work scheduling is
done in two phases. Firstly, new work, batch and/or interactive is scheduled into the sys-
tem and, secondly this new work starts to be managed by the kernel memory scheduling
which then eventually competes for CPU time on a priority basis. NQS is used to schedule
new batch work into the system for execution and will immediately compete with the
interactive workload. The interactive work is initiated by services such as

inetd

,

ftpd

, and

rshd

 and normally is short-lived (but not always so). After new work has been scheduled
for execution the kernel memory scheduler is the primary facility that governs all work
throughput and/or performance.

The kernel memory scheduling is the main focus of attention in this paper. The kernel
CPU scheduling is not discussed and was not seen as a problem with respect to balancing
the batch and interactive workloads. The simple matter was that a process cannot gain
access to the CPU without first being in memory!

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 2

Balancing the customer requirements for batch and interactive work on a single UNICOS
7.0 system was manageable for few years, but then proved to be very difficult when our
engineers began an aggressive schedule in using large memory X-Window-based interac-
tive ANSYS codes for creating and analyzing 3-D solid models. A major part of their deci-
sion making process relied on quick turn-around. This situation drove us to spend time to
improve our understanding on how the kernel arbitrated the memory and CPU resources
between batch and interactive work. With this understanding, and after unsuccessfully
using

nschedv

 to obtain the desired balance between these two work loads, a simple mod-
ification to the kernel memory scheduling was designed. The remainder of this paper pre-
sents this design.

2.0 Initial attempt to balance the work loads

As mentioned above, the initial attempt to resolve the problem was done by adjusting the

nschedv

 parameters. The parameters were set to cause the large memory ANSYS codes to
swap to the high-speed swap partition on the SSD by making it a Non-Hog process.

Figure 1 - Original Memory Scheduling and Swap Space Strategy

Small Memory Processes

Batch

Interactivesystem

Interactive

Interactive

system

Batch

Batch

Interactive
ANSYS

Large Memory Processes

H
og

 P
ro

ce
ss

es

For Non-Hog processes6500 MB/s

Low-speed Disk

20 MB/s

THE PROBLEM

Poor interactive ANSYS
performance

N
on

-H
og

 P
ro

ce
ss

es

 Memory

High-speed SSD (48Mw)

 Swap Device Partition-0

SDS

Ldcache

Interactive

Swap Device

hog_max_mem

SSD - 2048 Mw

batch

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 3

This was achieved by simply changing the

nschedv -h memhog

 value to be just slightly
larger than the size of the ANSYS memory size. This caused the ANSYS program to be
classified as a Non-Hog process. The configuration we had prior to this time for memory
scheduling and swap space strategies is given in Figure 1. In this figure, the ANSYS pro-
gram is a Hog process. Figure 2 depicts how Figure 1 changed when the above

nschedv

was implemented to make the ANSYS program a Non-Hog.

Swapping the large Non-Hog ANSYS processes to the SSD provided only a marginal
improvements. Speculation as to why, promoted the idea that other Non-hog batch pro-
cesses were also swapping to the SSD and residing there for long periods of time in a dor-
mant state while their active children were performing all the real work. If this was
correct, then this aspect would mean the SSD swap space for Non-Hog interactive pro-
cesses, such as the ANSYS code, would be or could be denied. They would instead be
swapped to the slow-speed disk devices. The swap device (the SSD partition included),
can at times, become annoyingly fragmented which inhibits the swap placement strategy
from working successfully.

The above speculation was proven correct once we had the

swapinfo

 command (see
below) written and running. The

swapinfo

 utility proved to be enormously helpful during

Figure 2 - Memory Scheduling and Swap Space Strategy

Small Memory Processes

Batch

Interactivesystem

Interactive

batch

Batch

Batch

Large Memory Processes

H
og

 P
ro

ce
ss

es

For Non-Hog processes

Low-speed Disk

THE PROBLEM
Poor interactive ANSYS
performance because SSD swap

N
on

-H
og

 P
ro

ce
ss

es

 Memory

High-speed SSD (48Mw)

 Swap Device Partition-0

SDS

Ldcache

Interactive

Swap Device

hog_max_mem

SSD - 2048 Mw

Non-Hog
Batch

Interactive
 Non-Hog
 ANSYS

space over subscribed and possibly
fragmented. No gurantee for
ANSYS swapping to SSD

Maybe swaps

Small dormant batch procs swap
to SSD causing fragmentation

to SSD

?

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 4

the development cycle. In fact, even today, most analysts and QA testing employ this util-
ity for improved visibility on the overall process memory allocations and other miscella-
neous items it provides.

Having failed to achieve the right balance between batch and interactive using

nschedv

 we
were convinced the answer lay in having more precise control over interactive and batch
processes contending for memory and swap space. This control mechanism would also
need to influence where these type processes get swapped on SWAPDEV.

3.0 Functional Requirements

We required a memory scheduling design that would allow precise control over how mem-
ory is allocated based on whether a process is associated with NQS (batch) or interactive.
With this in mind the following functional requirements were arrived at.

•

Provide one or more new memory scheduling algorithms which must be controlled
using the standard

nschedv

 command. The initial implementation was to consider the
following three scheduling policies:

a. Allow memory to be

precisely

 partitioned between interactive and batch work

b. Allow

small

 batch work to encroach on interactive memory partition space

c. Force

large

 interactive work to contend for space in the batch memory partition

•

Re-configure physical devices used for swapping to improve swap i/o bandwidth

•

Configure SWAPDEV partitioning to assist with the new memory scheduling goals

•

As space in the SSD swap partition is view as being critical for interactive performance
the Cray released software should be modified to avoid inappropriate use of the SSD
swap partition. An example of this would be to avoid having SSD used when suspend-
ing large memory batch jobs

•

Provide software to monitor the system’s Memory scheduling, Job category assign-
ments, and swap placement strategy

4.0 Discussion

The focus of all memory scheduling by the kernel is in the sched.c module. This module is
concerned solely with the arbitration of memory when processes require memory that is
not immediately available. It also manages the Hog memory allocations and Job categori-
zations. When

nschedv -i 1

 has been defined all processes are assigned a Job Category.
This categorization affects their initial or preferred swap device partition placement. For
example, Table 1 and Table 2 indicate preferred process swap image placement when
SWAPDEV is partitioned into 2 and 3 segments respectively.

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 5

In addition to Job Categories for swap placement, processes are also assigned a process
category by sched.c based on their interactive or batch origination. This category affects
how quickly a processes can swap out or in.

The following difficulties were quickly determined during initial observations on how the
system performs swap placements.

•

Determining the configured swap partition sizes is somewhat difficult (use /etc/crash)

•

Determining which swap partition a process resides in

•

Determining whether swap placement overflow has occurred

•

Determining whether system has correctly categorized a process because:

a) it can change rapidly as it changes between Hog and Non-Hog

b) it can change rapidly when critical kernel resources obtained/released

c) system may be slow in assigning a category if memory under-subscribed

Some additional notes are also worth mentioning here. The kernel memory scheduling is
performed in a strict order.

First, processes such as indicated below are considered for memory allocations

TABLE 1. Swap Placement for 2 swap partitions

Job Category 1 Job Category 2 & Job Category 3

Swap Partition-1 Swap Partition-2

System processes Batch Non-Hog processes

Super user Non-Hog processes Interactive Hog processes

Real Time processes Super User Hog processes

a

a. A super user process CANNOT be marked as a CPU-Hog

Shared Text processes Overflow from Category 1

Interactive Non-Hog processes Hog processes

TABLE 2. Swap Placement for 3 swap partitions

Job Category 1 Job Category 2 Job Category 3

Swap Partition-1 Swap Partition-2 Swap Partition-3

System processes Batch Non-Hog processes Hog processes

Super user Non-Hog processes Interactive Hog processes Overflow from Category 2

Real Time processes Super User Hog processes

Shared Text processes Overflow from Category 1

Interactive Non-Hog processes

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 6

1. The swapper process (pid=0) can NEVER swapped

2. The init process (pid=1) CAN be swapped (we however have modified init to be locked
into memory)

3. Idle processes (pids=2,3,4,....NCPU+1) can NEVER be swapped

4. A real-time process

5. A process that is holding critical locks such as ldcache locks

6. A runnable process in a kernel thread with inodes locked

7. Super user processes (i.e., pc->pc_uid==0 && pc->pc_suid==0) cannot be a CPU-hog

Secondly, process such as those indicated below are considered for memory allocations

1. 1st - Interactive processes if

nschedv -i 1

 defined and processes that are not system pro-
cesses nor belong to a batch NQS session

2. 2nd - Processes belonging to a batch NQS session

5.0 Kernel Modifications

Memory scheduling is driven by swapin activities. The kernel memory scheduler sched.c
evaluates processes on the SWAPDEV device and determines which processes should be
swapped out and which processes should be swapped in. What swaps in and what swaps
out is determined by process priority, Job category, and Hog status. As mentioned in the
Discussion section, Job category can change frequently depending on certain system
resources a process may be holding, such as inode or ldcache locks. In general, the lower
the process Job category, the higher its priority for memory becomes. Job categories range
from 0 to 9. There is a direct relationship between Job category and the process type (ker-
nel, real-time, root, Non-Hog, and Hog processes) and whether it is interactive (the system
code refers to these as being non-batch) or batch originated. The Job categories are con-
tained in the proc entry structure elements pc_swcat_in and pc_swcat_out. Most of the
time these two fields are identical. However, they have been observed to be different and
probably depends on what the kernel decides needs doing to expedite some action on
behalf of the process (could be that the process is holding a critical resource which should
be released as quickly as possible). The pc_swcat_in and pc_swcat_out values are used by
the kernel in deciding where the preferred place on SWADEV the process should be
swapped. As the kernel will at times manipulate these two values it is possible to see a pro-
cess swapped to a place that it is really not meant to be. However, this situation does not
last for much more than a few seconds.

A batch process is defined by the S_BATCH flag in the process session table structure ele-
ment s_flag.

The sched.c module was modified to accommodate the requirements for improved mem-
ory scheduling. Other ancillary modules that also required changes were fork.c, grow.c,
lock.c, slp.c, and text.c (with UNICOS 8 clock.c was also modified). All of these kernel
modules come into ‘play’ when a process grows or shrinks its memory size such as for

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 7

exec(2), fork(2), and sbreak(2). The modifications made to these modules was in direct
support to honor a new -S option made to the

nschedv

 command (see External Modifica-
tions). All local code was very carefully integrated into these modules to not disturb any of
the vanilla code (no vanilla code was deleted at all). This technique has proven to be of
great benefit when re-applying this feature during major system release upgrades. Except
for UNICOS 7 to 8 when the kernel was heavily modified with multi-threading locks, the
effort to apply the local code has taken just a few hours.

The header file schedv.h was also modified to include some new ‘Behavior modification
flags’ in the memory scheduler structure element sv_flags.

One other unanticipated kernel modification was found to be necessary during several
attempts to configure the swap device partitions. This was in the module swap.c. The mod
in swap.c turns off the round-robinning between partitions 2 and above if the number of
partitions is exactly 4. This was done because it was required to have one large high-per-
formance swap partition for batch jobs and be able to add more partitions if additional
swap space was needed. These extra partitions would presumably be lower performing
and would be used only as a last resort. This code is not in use now since 5 partitions are
configured, and partitions 2, 3, and 4 are exactly the same size and have identical i/o per-
formance (see

swapinfo

 screen output below). This swap partition configuration allows
the release code to round-robin between partitions 2, 3, and 4.

6.0 External Modifications

The /etc/nschedv command was examined and a new option (actually what was chosen
was the defunct option S which was already coded into /etc/nschedv) was decided on as
follows.

/etc/nschedv -S option

where

0 - Disables local memory scheduling and reverts to Cray’s default

1 - Selects local memory scheduling policy #1

2 - Selects local memory scheduling policy #2

3 - Selects local memory scheduling policy #3

Memory scheduling policy #1

All batch processes are classified as Hogs and all interactive processes are classified as
Non-Hogs, regardless of memory and/or CPU usage. The /etc/nschedv -H hog_max_mem
can therefore be used to control the total amount of memory that can be used by all batch
processes at any given time. The /etc/nschedv -h memhog -c cpuhog options have no
meaning when -S 1 is used.

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 8

Memory scheduling policy #2

Only batch processes are classified as Hogs per the /etc/nschedv -h memhog -c cpuhog
options. All interactive processes will be classified as Non-Hogs regardless of their mem-
ory and/or cpu usage. The /etc/nschedv -H hog_max_mem can therefore be used to control
the total amount of memory that can be used by all batch Hog processes at any given time.

Memory scheduling policy #3

All batch processes are classified as Hogs and all interactive processes are classified per
the /etc/nschedv -h memhog -c cpuhog options. The /etc/nschedv -H hog_max_mem can
therefore be used to control the total amount of memory that can be used by all batch and
interactive Hog process at any given time.

7.0 Memory Scheduling and Swap Placement Validation

UNICOS does not provide any practical way for observing process Hog status, Hog mem-
ory usage, process Job Categories, Interactive and Batch memory usage, or swap space
usage and process image swap placement. The only facility that provides some informa-
tion is /etc/crash and, maybe /usr/bin/sar (at a stretch). The author has observed /etc/crash
reporting erroneous data when memory is not over-subscribed.

To facilitate validation and monitoring of the various activities mentioned above, a pro-
gram called

swapinfo

 was created. This program employed ‘curses’ to manage its screen
format and output and used highlighting (reverse video) to identify problems as they
occurred. Optionally, problem reporting can be captured and written to a time-stamped
logfile for post analysis.

The basic operation of

swapinfo

 is to periodically gather various pieces of information
from the kernel tables and then scans the process table to arrive at a picture of what pro-
cesses are loaded in memory and those that are swapped. The information is then dis-
played or updated on the screen.

The swapinfo command was given several command line options as follows:

swapinfo [-a] [-c 0|1] [-l logfile] [-o 1] [-p passes] [-r refresh] [-v 1|2|3|4]

All of these options can be selected dynamically during

swapinfo

 execution. A typical
screen output using a verbosity level 2 (-v 2) is given below. Note the ‘*’ in the table
showing swap partition usage indicates where the round-robin swap partition rotor pointer
is. In the example provided the ‘*’ rotates among partitions 2, 3, and 4. The small parti-
tion 1 is there just to make the right partition be partition 2, the one where the round-robin-
ning starts. It is of no consequence if the processes assigned to partition 1 have their own
partition.

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 9

UNICOS: Swapper Usage 13:50:01 Pollrate: 3 Passes: INDEF

BCS Memory Scheduling Mode-1 .. [-h 2048 -c 0 -H 889791 -i 1 MPX Swapper]
Total swap space being used 0.11% (5.88 Mw)
Maximum swap space used so far 0.11% (5.88 Mw @ 13:50:01)
Top ten largest swap holes in Mws . 1715.53, 1676.91, 1594.92, 120.69, 116.26,
 38.70, 11.67, 4.80, 4.34, 2.69,
Smallest largest swap hole seen ... 3513408 (1715.53 Mw)
In-core Interactive memory demand.. 116704 (56.98 Mw, Max 56.98 Mw)
Swapped Interactive memory demand.. 6880 (3.36 Mw, Max 3.36 Mw)
In-core Batch memory demand.. 173920 (84.92 Mw, Max 84.92 Mw)
Swapped Batch memory demand.. 1280 (0.63 Mw, Max 0.63 Mw)
Number of swapped SDS images....... 0 (Max seen 2)
Total swapped SDS space............ 0 (0.00 Mw, Max seen= 228.13 Mw)
Current largest swapped SDS image.. 0 (0.00 Mw, Max seen= 700.00 Mw)
Machine’s allocatable user memory . 96.78% (456.48 Mw)
In-core user memory being used 290624 (141.91 Mw)

Total user memory subscription 31.83% (145.97 Mw, Max 145.97 Mw @ 13:50:01)

Bat/Int hog status errors found ... 0/ 0 This pass, 0/ 0 Accumulative
Total Hog memory subscription 19.69% (85.55 Mw, Max 85.55 Mw @ 13:50:01)
Computed incore Hog mem inuse .. 173920 (84.92 Mw, 58 procs)
Kernel says incore Hog mem inuse .. 173920 (84.92 Mw)
Max memory for hogs (hog_max_mem) . 889791 (434.47 Mw)
Swapped Hog memory being used 1280 (0.63 Mw, 8 procs)
Pid and size of largest process ... 24545 (34.47 Mw) Memory resident
NonHog Inter In-Core/Swapped Mem .. 116704 (56.98 Mw)/ 3200 (1.56 Mw)
NonHog Batch In-Core/Swapped Mem .. 0 (0.00 Mw)/ 0 (0.00 Mw)
Hog Inter In-Core/Swapped Mem 0 (0.00 Mw)/ 0 (0.00 Mw)
Hog Batch In-Core/Swapped Mem 173920 (84.92 Mw)/ 1280 (0.63 Mw)
Swap partition allocation errors .. 1 This pass, 1 Accumulative
Multitasked sessions 2 In-Memory, 0 Swapped
Number of plocked processes 7 (2.05 Mw)
Number of frozen processes 0 (0.00 Mw)
Number of hog_tied processes 0 (0.00 Mw)
Number of times hog proc swaps 0
Number of in-core/swapped procs ... 396 (max 396) / 30 (max 30)

Swap Partition maximums seen
Part# 0 1 2 3 4
Max: 4.54% @13:50:01 0.00% @13:50:01 0.01% @13:50:01 0.01% @13:50:01 0.01% @13:50:01

Swap
Part-#

Starting
Block

Part Size
Blocks

Times
Used

Blocks
Used

Percent
Used

Procs
Swapped

TxtEnt
Swapped

part-0 0 312576 11764 14176 4.54 23 19

part-1 312576 784 0 0 0.00 0 0

part-2* 313360 3513888 16 320 0.01 2 0

part-3 3827248 3513888 16 480 0.01 3 0

part-4 7341136 3513888 16 320 0.01 2 0

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 10

Job Cat Swap Space Job Cat Swap Space
 0 6848 1 0
 2 0 3 0
 4 192 5 0
 6 0 7 0
 8 0 9 1120

Work In-Core Job Categories
Type Kern Real Root Non-Hog Hog Total Max
Inter 0 7 185 146 0 338 338
Batch 0 0 0 0 58 58 58

Work Swapped Job Categories
Type Kern Real Root Non-Hog Hog Total Max
Inter 22 0 1 0 0 23 23
Batch 0 0 0 0 7 7 7

8.0 Unanticipated Bonuses

The simple control mechanism provided by the /etc/nschedv -S 1 command allowed
memory to be logically partitioned between interactive and batch workloads. By monitor-
ing the accumulative interactive memory demands the /etc/nschedv -H hog_max_mem
command can be used to periodically change the partitioning (within certain site restricted
limits) so that interactive performance can be maintained. The most important aspect for
good interactive performance is to ensure there is sufficient memory for interactive pro-
cesses.

This has proven to be a real bonus as the interactive load, once being a day time occur-
rence during week days, is now quite a variable. This interactive work load can at times
extend well into the night time and even is ongoing during weekends when engineers are
working to tight schedules. Rather than constantly asking the engineering community for
their interactive forecasts, the system is simply left to adapt itself automatically to the
interactive load as it comes and goes.

This technique has now been used for about 4 years and has relieved us having to spend
time and effort in addressing customer concerns about interactive performance. The pro-
gression in partitioning memory between interactive and batch over the past few years is
shown in Figure 3. As can be seen, the interactive memory demand causes the
hog_max_mem value to vary from a define maximum to defined minimum threshold. The
minimum threshold is set to not allow interactive to consume too much memory and the
maximum threshold is set to allow space for system daemons etc to have room for mem-
ory at all times.

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 11

The

swapinfo

 command reports the top ten largest ‘holes’ in SWAPDEV. This has been
useful information that has helped us understand why some large SDS jobs could not be
preempted. When an SDS job is preempted by URM its SDS image is copied to the
SWAPDEV and its SDS arena released. For a large SDS arena to be copied successfully
there must be a contiguous section on SWAPDEV (i.e., a ‘hole’ large enough must exist)
to hold the job’s SDS arena image. Armed with the

swapinfo

 display it is then just a matter

Time of Day0 hrs 24 hrs

Max Memory Available

hog_max_mem

Time of Day0 hrs 24 hrs

Max Memory Available

hog_max_mem

hog_max_memhog_max_mem

Time of Day0 hrs 24 hrs

Max Memory Available

hog_max_mem
is now a variable

Minimum hog_max_mem
allowed

Figure 3 - Progression of how memory partitioning occurred

4 years ago

Today

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 12

of time observing the behavior and making an informed decision to reconfigure and/or
upgrade the SWAPDEV hardware.

9.0 Summary

Once the mechanics of kernel memory scheduling were understood it took just a small
amount of time and coding in seven kernel modules and one header file to introduce a suit-
able local memory scheduling policy for solving the problem. The external design allowed
the policy to be easily implemented using the

nschedv -S #

 command. Figure 4 depicts the
configuration employed today using

nschedv -S 1 -i 1.

The actual implementation proved to be a lot easier than was first thought, and the local
code integration effort has been of no real consequence during UNICOS major release
upgrades.

Interestingly enough, even though three local memory scheduling policies were designed,
policy 2 and 3 have not ever been employed during production. Our QA testing always

Figure 4 - Current Scheduling and Swap Space Strategy

INTERACTIVE Memory

Batch

Interactivesystem

Interactive

system

Batch

Batch

BATCH Memory

H
og

 P
ro

ce
ss

es

For Non-Hog processes
6500 MB/s

High-speed Disk

- All Interactive are Non-Hogs
- All batch are Hogs

N
on

-H
og

 P
ro

ce
ss

es

 Memory

High-speed SSD (153Mw)

 Swap Device Partition-0

SDS

Ldcache

Interactive

Large Swap Device

hog_max_mem

SSD - 2048 Mw

Interactive
 Non-Hog
 ANSYS

75 MB/s

- SSD swap space increased
- Disk swap rates improved
- Interactive swaps to SSD

Interactive
 Non-Hog
 ANSYS

 (nschedv -S 1 -i 1)

Partitions 1,2,3, and 4

- Batch swaps to disk
- Batch memory controlled using
 nschedv -H max_hog_mem

(adjustable)

SSD swap partition
enlarged to help avoid
fragmentation

The Age-Old Question of How to Balance Batch and Interactive June 8, 1998 13

ensures they work though, just in case we have second thoughts on the matter. Policy 1, as
it happens, was all that it took to resolve our balancing problem.

The swapinfo program has shown itself to be an admirable addition to our toolkit. It pro-
vides invaluable insight on the aspects of kernel memory scheduling, swap space manage-
ment, swap space allocations, and possible mis-behavior.

By monitoring the interactive memory demand the logical memory partitioning for inter-
active and batch work loads can be made dynamic quite easily. This technique allows the
system to automatically adapt itself to the interactive demands.

10.0 Acknowledgments

Credit must be given to a past CRI employee, Henry Newman, for giving a very insightful
CUG ‘92 workshop session on the UNICOS kernel Memory Scheduling Strategies using
nschedv and the Job category features. The workshop handouts provided the author with
an excellent reference point from which the seed for the enhancement presented here came
from.

Also, credit must go to three very worthy Boeing employees, Bill Matson, Mark Lutz, and
Dave Atler. To Bill, for integrating the local kernel mods into several new UNICOS major
releases without one word of complaint, to Mark for diligently working the kernel swap.c
problem related to the round-robinning swap image placements, and to Dave for asking
me tough questions on how this or that worked or wanting explanations for some strange
anomaly he saw during his QAing.

