
Experiences with Industrial Applications on
Massively Parallel Computers

Jörg Stadler

debis Systemhaus GmbH
Fasanenweg 11

D 70771 Leinfelden-Echterdingen
E-Mail: jstadler@debis.com

Abstract. HWW (Höchstleistungsrechenzentrum für Wissenschaft und Wirtschaft
GmbH) is a large german supercomputing facility, that offers its compute resources to
scientific as well as industrial users. This article reports on the applications that
industrial users run on the HWW equipment and the computer architectures they use.
The current situation is characterized by an increasing demand for compute resources
from commercial customers which eventually led to the installation of an additional
machine in march 1998. But all of this demand is still exclusively met by vector
machines, whereas massively parallel machines (MPPs) are still being evaluated by
the industrial user community.

1 Introduction

Supercomputers are no commodity products, but highly specialized and also
expensive tools. Still their use can be very advantageous for industry, even if one
considers small and medium enterprises. But the purchase of such a machine can
only rarely be justified for a single organization, and the operation a world class
supercomputing center requires even larger investments. Therefore, the idea was
born to join the efforts of academia and industry in the HPC area. This idea was
implemented in the HWW (Höchstleistungsrechner für Wissenschaft und
Wirtschaft, Supercomputers for Science and Industry), which was founded by the
state Baden-Württemberg, Porsche AG and debis Systemhaus. HWW operates
several supercomputers that are listed in table 1. Within HWW, the state of
Baden-Württemberg gives supercomputer access to university research, the
Porsche AG acts as end-user and debis Systemhaus offers high performance
computing resources and services to commercial customers. It is the goal of debis
Systemhaus to provide the European industry with access to state of the aret
supercomputing equipment.

Currently the commercial users at HWW are mainly from the automotive and
aerospace industries, their size ranging from major European airplane and car
manufacturers to small engineering firms.

In this article we give a brief overview of the applications of HWW’s customers
and describe in more detail our experiences with industrial applications on MPP
systems.

Table 1. Machines available via HWW

Machine CPUs Memory
 [GB]

Typ
e

Location

NEC SX4 32 8 PVP Universität Stuttgart

NEC SX4/A 4 8 PVP Universität Stuttgart

Cray T3E 512 64 MPP debis Untertürkheim

Cray T90 4 1 PVP debis Untertürkheim

Cray C90 1 2 PVP debis Untertürkheim

Cray C90 3 2 PVP debis Untertürkheim

Cray J90 8 2 PVP debis Untertürkheim

IBM
RS6000/SP

256 122 MPP Universität Karlsruhe

2 Current Customer Applications

The application mix currently consists of roughly ten to twelve different codes
from areas such as static and dynamic structure analysis, computational fluid
dynamics, and of course crash simulation. Most of these are of-the-shelf programs
from ISVs, but a few home grown (source-) codes still survived. While the
number of different application codes is to be evenly distributed between fluid
dynamics and structural analysis, it must be noted, that by far the largest part of
the CPU time is used for crash simulation. Crash simulations are nowadays a
proven and reliable tool that is employed in vehicle body design. This, together

with an increasing complexity of the numerical models, has led to an ever
increasing demand for compute resources in this area. In fact, HWW installed an
additional NEC SX4/A vector supercomputer in march 1998 in response to the
increasing demand.

3 The Situation of MPPs

When one considers the type of computers used by industrial users, the current
situation can be characterized as follows:

• Vector machines are the true and tried workhorses for production
calculations.

• Most applications have been tuned for the SMP vector architectures and
typically run on up to four processors.

• MPP versions of some codes are available, but not in production use.

• Industrial users start to evaluate MPPs and run first tests or benchmarks.

HWW offers its users access to two large and powerful MPP machines, namely a
Cray T3E with 512 nodes and an IBM SP2 with 256 nodes. However, none of
these machines is regularly used by commercial customers, their use by industry
is still in what might be called an evaluation stage. During the last months there
have been several requests from the user community to run benchmarks and
demonstrations on the MPP machines.

All applications used today were originally developed on single processor
machines and run on vector machines. Most of them are parallelized for SMP
architectures, so that they can exploit more than one CPU on the vector
machines. For some of them there are also ports to MPP machines available. One
the other hand, there is no application that specifically was designed for an MPP
nor one that specifically requires an MPP machine. Given that situation, why
should an user leave the proven and well known vector machine and move over to
an MPP? The two main arguments in favor of MPPs are: First, the high
performance that results, if a given application can use a sufficiently large
number of processors. Under favorable conditions, an MPP can easily outperform
a vector machine. And second, the large, but distributed memory (compare table
1: The two MPPs at HWW have a main memory of 122 GB and 64 GB,
respectively, whereas the largest vector machine has an main memory of 8GB).

In the past few month there were several requests that addressed the above points.
For example, we ran a fluid dynamics model of a size of 8GB on the Cray T3E.

In the area of crash simulations we experience the fastest growth in demand: The
models get more and more complex and also the number of simulations increases
dramatically. More specifically, the models grow faster with time than the
performance of the vector systems increases. The introduction of SMP software
pushed the vector systems to higher levels of performance, but it could well be
that the crash models even outgrow these. Therefore we decided to explore the
possibility of running crash simulations on MPP systems. The LS-Dyna code had
already been ported to MPP systems, but to our knowledge nobody was actually
using it for that application.

4 Case study: crash simulations

When we started to try crash simulations on MPPs, the first thing we did was to
run several benchmarks in order to assess the feasibility of the project. The
results, as table 2 shows, were indeed very promising: They showed that roughly
eight processors of an MPP system delivered roughly the performance of one
vector processor and they also showed an excellent scalability of the MPP
systems.

Table 2: Benchmark example for crash simulation

Machine Processors Runtime [s]

SGI Origin 4 103.090

SGI Origin 8 53.652

SGI Origin 16 25.997

NEC SX4 1 51.608

NEC SX4 4 25.420

We encountered, however, two major numerical problems: First, we found that
the results depend on the number of processors used, but second and worse, we
found that we couldn’t reproduce our results even when we held the number of

CPUs constant. In fact, we had a situation, where, much to our surprise, the code
gave us considerably different results from the same input data on the same
machine and with the same number of processors. What had happened? Could it
be that MPPs are non-deterministic machines? To study this strange behavior
further, we used the small model of a tubular beam shown in Figure 1. The beam
fixed on its right end and deformed by a moving rigid wall that hits the beam
from the left. Figure 1 shows three consecutive stages from the corresponding
calculation.

Figure 1: Small test calculation: Deformation of a thin walled tubular beam

The beam deforms until the energy of the impacting wall has been absorbed. The
beam shortens by the amount by which the wall is displaced during the calculation.
Naturally, this quantity is of vital interest for crash simulations. Figure 2 shows

plots of this displacement during the last phase of the calculation. In figure 2 we
have plotted the results of three calculations that we ran consecutively with a
constant number of processors. The difference in the results is clearly visible and in
the order of roughly 1%. They are of course unacceptable for a calculation that could
possibly influence the safety of a car passengers.

Figure 2: Displacement of the wall from three consecutive simulations

These non-reproducible results puzzled us for quite some time. It must be noted,
however, that crash calculations are numerically extremely sensitive. One can

easily imagine, that there are several numerically instable situations in a
calculation like the one shown in Figure 1. In these situations, even the smallest
numerical differences can easily grow to a noticeable size. Now it is well known
that in contrast to their mathematical counterparts numerical operations on
computers are not associative. So two such simulations have identical results only
when they process the same input data in exactly the same order.

The LS Dyna code uses geometric domain decomposition to distribute the data to
the available processors. It uses the MPI message passing library for
interprocessor communication. From the point of view of a single processor a
simulation can be seen as a sequence of calculation and communication steps,
which depends on the data that lives on that processor. When we now change the
number of processors, the data assigned to a given processor will change and so
will its sequence of operations. So the results will change, when one uses a
different number of processors. This fact somewhat limits the usability of MPPs:
One can’t just use some more processors when in a hurry, and some less, when
not. Instead, on has to stick to a given number if one needs to compare the results
of different runs.

But at least we can understand why the results change with the number of CPUs.
But why did the results change from one run to the other, with the same number
of CPUs? We checked every possibility we could think of, but couldn’t find a
solution until the we talked directly to the maintainer of the code: We found out,
that he had implemented dynamic load balancing in one part of the program.
This is of course, considered good programming practice on MPP systems, but
also dynamically changes the sequence of operations from one run to another.

 This problem was identified and is now fixed. At this time it is still being
worked on, as it lacks some features that are available in the vector version. It
will also undergo some additional testing, but we do hope that we can soon use
MPP machines for production calculations and we sure have learned, that it takes
some time and effort to get production quality results from MPP systems.

5 Conclusion

We have reported on the usage of the supercomputer resources of HWW by
industrial customers. The overall acceptance of HWW’s supercomputing services
by commercial customers is promising: HWW purchased and installed an
additional NEC SX4/A in March 1998 to meet their demand for compute

resources. But all of this demand is still exclusively met by vector machines.
MPPs are only just evaluated by industrial users for some special cases. The
example from the area of crash simulation shows that it still takes some effort to
move production applications to MPPs, even after the initial porting of the
application was finished.

