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Abstract
Pthreads is a POSIX standard library for expressing concurrency on uniprocessor and symmetric multiprocessor
computers. Typical multithreaded applications include database manipulation, operating systems, or any algorithm
displaying task-level concurrency. These types of programs are generally coded in C. Hence, the POSIX standard
only defines a C interface to Pthreads. The lack of a standard Fortran interface has limited the use of Pthreads for
scientific and numerically intensive applications. However, many of these applications would benefit from
multithreading. For example, the manipulation and solution of dense linear systems with 10,000 to 40,000
simultaneous equations are made up of many independent tasks that may be executed concurrently. The
effectiveness of Fortran and Pthreads for scientific programming will be demonstrated using two linear algebra
routines (matrix multiplication and Gaussian elimination) and two algorithms from the Command, Control,
Communication, and Intelligence Benchmark. This work builds on the Fortran interface to Pthreads presented at the
40th Cray Users Group Conference.

Introduction
Threads is a programming model for expressing concurrency on uniprocessor or symmetric multiprocessor (SMP)
computers (Ben-Ari, 1982). Each thread is a separate execution stream with its own stack and instruction counter.
Typically, a thread represents an independent task or function. Though these tasks execute concurrently, they do not
necessarily execute in parallel, even on a SMP. It is up to the operating system to perform thread scheduling.
Threads exist within a single process, sharing the resources (memory, files, I/O channels) of the spawning process.
This relationship confers better resource utilization when running threaded applications.

Several thread standards are available: Microsoft Win32, DCE, Sun Solaris, OpenMP, and POSIX. Pthreads is the
most common and most portable standard (Nichols et al., 1996). It is available for nearly all UNIX dialects. DCE
threads is based on an earlier draft of the Pthreads standard (Lewis and Berg, 1998). Solaris threads are very similar
to Pthreads in terms of functionality. However, the two standards differ significantly in the way thread properties are
set (Robbins and Robbins, 1996). OpenMP (OpenMP ARB, 1997), the newest standard for multithreading, though
capable of expressing task-level concurrency, is designed for loop-level parallelism.

The purpose of this work is not to develop a Fortran and Pthreads combination superior to other high performance
computing methods or algorithms. Rather, this work illustrates that scientific applications display functional
concurrency and may benefit from multithreading. Fortran is the traditional language of scientific programming;
Pthreads is designed to express task-level, or functional, concurrency. The POSIX standard, however, does not
define a Fortran interface to Pthreads.

A Fortran 90 application programming interface (API) to the Pthreads library was proposed last year (Gabb et al.,
1998; Breshears et al., 1998). The present work demonstrates the efficacy of this API for scientific computing and
numerical analysis. Multithreaded matrix multiplication and direct solution of linear systems of equations
demonstrate the latter. Two algorithms from the Command, Control, Communication, and Intelligence (C3I)
benchmark (Metzger et al., 1996; Brunett et al., 1998; Pires and Elder, 1998) demonstrate the former.
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Fortran Pthreads Applications

Linear Algebra
Matrix Multiplication
Matrix-matrix multiplication is one of the most studied algorithms in numerical computation. The simplest
algorithm is a triply nested loop structure:

   do i = 1, N
      do j = 1, N
        do k = 1, N
          C(i,j) = C(i,j) + A(i,k) * B(k,j)
        end do
      end do
   end do

The ordering of the loops is arbitrary and leads to different memory access patterns.

Our first attempt at threaded matrix multiplication used sparse matrices. To conserve memory by not storing zero
entries, a linked-list scheme (Duff et al., 1989) was used in place of the standard 2-D array layout. This method
employs four single-dimensioned arrays: 1) VALUE holds the nonzero data values, 2) JCN holds the column index
of the corresponding element in VALUE, 3) LINK holds the index of the next element within the row, and 4)
IROWSTART holds the index (in VALUE) of the first nonzero element within each row. Elements from a given
row can be found by starting at the element in VALUE indexed by the appropriate entry in the IROWSTART array
and following the LINKs. A special end-of-list value (say, -1) is stored in LINK of the last nonzero element within
the row.

While Fortran uses column-major ordering of data, the linked-list scheme lends itself to row-major computation.
Thus, the IKJ loop ordering was considered first. Rewriting the innermost statement of the loops in Fortran 90 array
syntax gives the following:

   C(I, :) = C(I, :) + A(I, K) * B(K, :)

Under this execution, the Ith row of C is generated by the summation of scalar multiples of rows from B. These
scalars are taken from the Ith row of A; i.e., the Kth element in the Ith row of A is multiplied by the Kth row of B. All
data is accessed in row-major order. It should be noted that the sparse matrix data structure could have stored values
in a column-major order with the second array holding row numbers of elements. However, because the actual
implementation uses only one-dimensional arrays, unless there was some matrix structural reason there would have
been no practical difference.

The threaded algorithm dynamically assigns rows of matrix C to individual threads using a shared counter variable
to indicate the next available row for processing. After a row is assigned, threads repeatedly copy relevant rows of B
into a local vector (filling in the zeros) and multiplying this local vector by the appropriate scalar from A. Of course,
only those rows from B that correspond to a nonzero value in the row of A under consideration need to be copied to
the local vector. The results of the vector scaling are added to a local summation vector, which, after all scalars from
the relevant row of A have been processed, is added to the row of matrix C.

Access to the data structure holding matrix C must be mutually exclusive. For those nonzero elements in the
summation vector that correspond to nonzero elements in the original row of C there is no possibility of two threads
attempting to store a value to those locations because each row is handled by a single thread. However, new nonzero
elements from the summation vector must be stored within the data structure arrays and linked correctly. Because
two or more threads may be simultaneously updating previous zero positions within the C matrix, only a single
thread must be allowed to add new nonzero elements to the C matrix at any time.

Timing results (in seconds) from test cases run using 1000 x 1000 matrices each holding just under 10,000 nonzero
elements on a SGI/Cray Origin2000 system (IRIX 6.4) are shown in Table 1.
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# of Threads Time
(seconds)

# of Threads IKJ Time
(seconds)

JKI Time
(seconds)

1 0.259 1 75.5 29.8
2 0.261 2 42.4 20.2
4 0.261 4 22.4 11.2
8 0.264 8 11.9 6.1
16 0.270 16 6.3 3.4
32 0.301 32 3.6 2.0
64 0.324 64 3.2 1.9

128 0.364 128 3.0 2.3

Table 1. Sparse matrix
multiplication (1000 x 1000 with
almost 10,000 nonzero elements)
on a 112-CPU SGI/Cray
Origin2000 (IRIX 6.4)

Table 2. Dense matrix multiplication (1000 x
1000) on a 112-CPU SGI/Cray Origin2000 (IRIX
6.4)

The results for threaded, sparse matrix multiplication are somewhat disappointing. There is simply not enough work
to keep all threads busy. Also, the overhead of creating threads and memory contention increases as the number of
threads increases for a fixed-size problem.

The threaded sparse matrix multiply algorithm was adapted for use on dense matrices. The algorithm remained the
same for the dense version as was used for the sparse version with one alteration: the update of each row of the C
matrix by the local summation vector need not be made exclusive. Because each row of C is being computed by a
unique thread and all the memory space needed to hold the matrix has been allocated in a two-dimensioned array, it
can be guaranteed that no two threads will attempt to write into the same memory locations.

Because the dense matrices are now represented as 2-D arrays, memory access patterns must be taken into account.
From the triply-nested loop algorithm, the JKI loop ordering is well-suited. Writing the innermost statement of this
matrix multiplication algorithm with the inner loop collapsed with Fortran 90 array syntax yields:

   C(:, J) = C(:, J) + A(:, K) * B(K, J)

This loop ordering updates the Jth column of C by the summation of scalar multiples of columns from A. These
scalars are taken from the Jth column of B; i.e., the Kth element in the Jth column of B is multiplied by the Kth column
of A. Thus, the second threaded, dense matrix multiplication algorithm dynamically assigns columns of C to unique
threads which are updated by the local summation of scalar multiples of columns from A. Timing results for both
threaded, dense matrix codes are shown in Table 2.

Two things are apparent from this data. First, using the correct data access pattern (in this case, column-major order
of multi-dimensioned arrays) is essential for achieving the best performance. Second, the efficacy of using Pthreads
is demonstrated by the almost linear speed-up shown as the number of threads are increased. Here again, though,
thread overhead and memory contention begin to overshadow execution time when too many threads are used on a
relatively small, fixed problem size.

Though not covered here, other matrix-matrix multiplication algorithms worth considering for threading are the
parallel CannonÕs algorithm (Kumar et al., 1994) and StrassenÕs algorithm (Strassen, 1969).

Gaussian Elimination and Back Substitution
Solving systems of linear equations is an important numerical computation that is an integral part of the solution to a
variety of problems. One simple, direct method is Gaussian elimination with back substitution. During the
elimination phase of the algorithm, the update of each row below the current one can be done concurrently. Thus, as
was done in matrix multiplication, the row update is mapped to threads.
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As the algorithm progresses through the elimination steps, rows above the current row are never again accessed. In
order to ensure that the execution is properly load-balanced, roughly equal numbers of rows should be updated by
each thread. This load balancing was accomplished through dynamic scheduling of rows to threads in the matrix
multiplication codes. This type of scheme would work for Gaussian elimination. However, because each row update
has the same amount of work involved within each elimination step, it was thought that access to a shared counter
might cause an undesirable amount of overhead. A much simpler division of work was needed.

For Gaussian elimination, the rows of the matrix are statically divided in a cyclic manner. For N threads, the first
thread is assigned rows 1, N+1, 2N+1, É; the second thread is assigned rows 2, N+2, 2N+2, É; and so on. As the
Ith row becomes the current row, the thread assigned to that row moves the diagonal element to the Ith element of a
global pivot vector while all other threads wait for this pivot element to be stored. After the pivot value is found
each thread copies the current row into a local vector in order to apply a scaled multiple of this row to all other rows
assigned to the thread. Using this local vector to compute the scaling vector cuts down on memory contention to the
global matrix because this scaling vector will be computed many times by each thread. After all the assigned rows
have been updated, threads determine if the (I+1)th row has been assigned to it and, consequently, pull out the next
pivot value. Otherwise, threads wait for the pivot to be assigned into the proper pivot vector position.

For the back substitution phase, each thread is again assigned the same rows as in the elimination phase. Working
backwards, threads wait for all preceding elements of the solution vector to be computed. After computing the
assigned solution vector element, a thread waits for the time when it can calculate the next element of the solution.
The coordination of this phase is done slightly differently than was done when determining the current row in the
elimination phase. The pivot vector was initialized with zero. Because no pivot value can be zero (for a nonsingular
matrix), threads need only test the current pivot value for a nonzero value to know when the new pivot value had
been stored by a thread. Because any element of the solution vector could be zero, this method cannot be used for
the coordination of threads in the back substitution.  In this case, a global index is used. The index is decremented by
the thread that computes the corresponding element of the solution vector. Other threads simply wait until this index
contains the value corresponding to one of the assigned rows. The solution vector element corresponding to the
index is then computed. Once the global index reaches zero, the algorithm is complete and all threads exit.

Timing results for multithreaded Gaussian elimination of a linear system of 2000 equations is shown in Table 3. As
expected, a row-major algorithm does poorly when coded in Fortran. The algorithm was converted to column-major
by transposing the matrix (using the Fortran 90 TRANSPOSE intrinsic) and interchanging the indices [i.e., A(I,J) to
A(J,I)]. The number of threads does not necessarily correspond to the number of processors used by the program.
The operating system decides where to execute threads. The Phreads standard does not provide the programmer with
a means to map threads to processors. Two non-standard functions, pthread_setconcurrency  and
pthread_getconcurrency , are included in the IRIX Pthreads implementation. On SGI systems, these
functions are often necessary to achieve better parallelism for Pthreads programs. Notice the performance
degradation for two threads when pthread_setconcurrency  is not used (Table 3). Both threads may be
competing for the same processor or the threads may be competing for memory bandwidth on the same SGI
Origin2000 node.

A larger system of 10000 equations was also solved. The best performance was achieved for the transpose column-
major algorithm using 32 threads: 2.8 hours without pthread_setconcurrency and 2.4 hours with
pthread_setconcurrency .
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# of Threads

Row-Major
Time

(seconds)

Transpose
Column-Major
Time (seconds)

Transpose Column-
Major with

pthread_setconcurrency
Time (seconds)

1 672 162 162
2 735 232 125
4 556 115 68
8 1030 100 26
16 1642 147 53
32 1667 131 64

Table 3. Gaussian elimination with back substitution for a double precision linear
system of 2000 equations on a 112-CPU SGI/Cray Origin2000 (IRIX 6.5).

Command, Control, Communication, and Intelligence (C3I) Benchmark
Map-Image Correlation
Suppose, for example, that a harbor is under surveillance. A satellite photo reveals three ships docked in the harbor.
A few hours later, a spy plane flying over the area from a different angle takes a new picture. In order to extract
useful information from these surveillance images, it is necessary to align image features with a map of the area of
interest. Accurate alignment depends upon finding the correct translation and rotation of the image with respect to
the map. In the C3I benchmark, this is known as map-image correlation (Metzger et al., 1996).

In this simplified example, the map (fM) and image (fI) are digitized in 2-D grids with every node (l,m={1ÉN})
assigned a value:
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depending on whether or not the pixel associated with that node is illuminated. More detailed analyses might
digitize based on color, temperature, or elevation.

The correlation function of map fM and image fI is:
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where N1 x N2 is the number of grid points and i,j is the translation vector of the image with respect to the map.
High correlation denotes similarity between the overlapping portions of the map and image.

Calculating the correlation function by direct summation is very inefficient, requiring N1 x N2 multiplications and
additions for every N1 x N2 shifts i,j. Because the discretized map and image are discrete functions, fM and fI, one can
calculate fC more rapidly using the fast Fourier transform (FFT). The FFT requires on the order of (N1 x N2) ln (N1 x
N2) calculations, which is fewer than (N1 x N2)

2.

The Fourier correlation algorithm is shown schematically in Figure 1 (adapted from Gabb et al., 1997). Briefly, the
discrete functions fM and fI are transformed (denoted DFT for discrete Fourier transform) and the complex conjugate
FM

* and FI are multiplied:
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The correlation function describing the optimum overlap for given orientations of fM and fI is the inverse Fourier
transform (IFT) of the transform product:

f IFT FC C= ( )
(See Press et al., 1996 and Bracewell, 1990 for thorough reviews of fast transforms and Fourier correlation.)

The Fourier correlation algorithm exhibits two levels of concurrency (Figure 1). First, a 2-D FFT is commonly
implemented as a collection of independent 1-D FFTs, which can be mapped to threads. Second, the rotational scan
of image orientations with respect to the map consists of independent, and therefore concurrent, iterations. The
ability to easily express nested parallelism gives Pthreads an algorithmic advantage over higher-level thread
methods (e.g., OpenMP).

A threaded 2-D FFT was developed to test the efficacy of Fortran and Pthreads to the map-image correlation
benchmark. The 2-D FFT was coded as a collection of 1-D FFTs. The nonthreaded 1-D FFT routines (scfft and
csfft) from the Cray Scientific Library were used. The Cray Scientific Library contains a threaded 2-D FFT.
However, the purpose of this exercise is to create a 2-D FFT in which the smallest functional unit (i.e., 1-D FFT) is
mapped to threads. Because Fortran is column-major, the individual columns of the first dimension are transformed,
the matrix transposed, and the columns are transformed again. The columnar transforms are mapped to threads. The
order of the column transforms is irrelevant and threads never compete for the same memory locations. Therefore,
synchronization is only required after each array dimension is transformed. The timing results for the Fourier
correlation of two 1024 x 1024 grids shown in Table 4 demonstrate good parallel speed-up. However, the non-
threaded 2-D FFT routines in the Cray Scientific Library can correlate two 1024 x 1024 matrices in less than two
seconds. So, there is an obvious advantage to using an optimized FFT library. This also indicates that coding a 2-D
FFT as a collection of 1-D FFTs is not an efficient algorithm.

Terrain Masking
Terrain masking is the process of determining whether a location or altitude is visible from any of a set of vantage
points, called threats, or whether it is obscured, or Òmasked,Ó by intervening terrain (Schultz et al., 1995; Pires and
Elder, 1998) (Figure 2). The threats for this type of problem could be light sources, radio towers, antennae, radar
receivers, etc. The threats are effective only in their sensor range. Terrain masking computes the safe altitude, called
the masking altitude, at each grid point. Aircraft flying above this altitude can be observed by at least one enemy
sensor.

Terrain masking is an important application in ground-based C3I systems and flight planning computers. To support
real-time mission planning, terrain masks must be computed as quickly as possible. Terrain masking takes as input a
relief map of a region (i.e., 2-D grid of surface elevations), and the position and range of a set of threats located
within the region. Output consists of the original map plus masking altitudes. (Terrain masking output is used as
input to another method in the C3I benchmark called route optimization, which also contains opportunities for
concurrency.)

At each grid point within range of a threat, the masking height associated with that threat is computed. The final
masking height at each grid point is the minimum of the computed masking altitudes associated with each threat
covering the given grid point. For a given threat, the masking altitude at each grid point is computed by a line-of-
sight calculation.
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Digitize photo

Satellite photo (0900 hours)

Fourier
transform

Fourier
transform

Complex
conjugate

Correlation

Digitize photo

Digitize

Yes

No

Finished?

Rotate photo

Spy plane photo (1300 hours)

Figure 1. Map-image correlation.  The schematic illustrates how
Fourier correlation might be used to extract information from
surveillance photographs. Briefly, each rotational orientation of the
digitized photos is Fourier transformed and correlated. When all
rotations have been scanned, the orientation with the highest
correlation score is examined. The final alignment of the two
photographs reveals that a ship has left the harbor.

# of Threads Time (seconds)
1 155
2 85
4 47
8 28

16 19
32 14
64 16

Table 4. Fourier correlation of two
1024 x 1024 grids on a 112-CPU
SGI/Cray Origin2000 (IRIX 6.5)
using pthread_setconcurrency.
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Enemy Sensor
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Figure 2. Terrain masking.

Terrain masking contains task concurrency, it is also computationally intensive. Therefore, a Fortran and Pthreads
combination is well-suited to this algorithm. There are two opportunities for concurrency. First, each threat's area of
coverage can be divided into N equal-sized sectors with a thread mapped to each. Load balancing is near ideal,
because each thread will received an equal part of the threat's computation. This approach is simple to code because
there is no memory contention between threads. However, it is not scalable. Large values of N can be used, but as
the number of threads increases the area (and the amount of work) in each sector decreases. For a 6000 x 6000
terrain grid and 90 threats where at most only three threats are nonoverlapping, serial execution gives a baseline time
of 27 minutes. Using four threads, one for each quadrant, the terrain mask takes 11 minutes to calculate (a 2.5-fold
speed-up).

A second approach to concurrent terrain masking maps threads to threats rather than sectors. This introduces
additional complexity because the areas of influence for threats almost always overlap. Race conditions, in this case
write-write conflicts, are possible if multiple threads simultaneously access the same memory location (i.e., grid
nodes in overlapping regions). Masking heights in a column are computed via a line-of-sight calculation using the
masking heights from the previous column. Again, race conditions, in this case read-write conflicts, are possible if
one thread is reading a column while another thread is writing to it. Memory contention is avoided using mutual
exclusion (mutex) variables. A mutex variable is associated with every column of the grid. Whenever a thread
processes a column of the grid, it first locks the two associated mutex variables before proceeding.

This algorithm scales with the number of threats rather than sectors. However, the overhead associated with mutual
exclusion limits parallel efficiency as the number of threads increases. Timing results for this threaded algorithm are
shown in Table 5.

# of Threads
Time

(minutes)
1 25
2 14
4 8
8 5.5
16 3.5

Table 5. Terrain masking for a 6000 x 6000 grid
containing 90 threads.
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Conclusions
The results of this study show the applicability and effectiveness of Fortran and Pthreads to a range of applications.
Each of the test problems is easy to thread once the functional unit of concurrent computing is determined. Parallel
speed-up is demonstrated for each of the test problems. Excessive synchronization does degrade the parallel
performance of a Pthreads program. However, this is not unique to Pthreads.

Pthreads expresses concurrency by mapping functions to threads. The programmer must therefore understand the
algorithm being coded in order to identify functional concurrency and to compartmentalize work into concurrent
functions. High-level thread methods like OpenMP concentrate on loop-level parallelism. The programmer need
only find the work-intensive loops and add compiler directives. In this sense, OpenMP is superior to Pthreads.
However, none of the currently available OpenMP implementations currently supports nested parallelism.
Expressing multiple levels of concurrency is relatively simple using Pthreads.
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