
Application of FortranApplication of Fortran
Pthreads on Linear AlgebraPthreads on Linear Algebra
and Scientific Computingand Scientific Computing

Clay P. BreshearsClay P. Breshears

Henry A. Henry A. GabbGabb

Mark Mark FaheyFahey

USAE Waterways Experiment StationUSAE Waterways Experiment Station

Major Shared Resource CenterMajor Shared Resource Center

AcknowledgementsAcknowledgements

This work was funded by the This work was funded by the DoD DoD High Performance ComputingHigh Performance Computing

Modernization Program CEWES Major Shared Resource CenterModernization Program CEWES Major Shared Resource Center

through Programming Environment and Training (PET),through Programming Environment and Training (PET),

Contract Number: DAHC 94-96-C0002, Nichols ResearchContract Number: DAHC 94-96-C0002, Nichols Research

Corporation.Corporation.

IntroductionIntroduction

¥¥ Last year: Introduced F90 Pthreads APILast year: Introduced F90 Pthreads API

¥¥ This year: Are they really useful?This year: Are they really useful?

ÐÐ How easy is programming?How easy is programming?

ÐÐ Can we get decent parallel performance?Can we get decent parallel performance?

ÐÐ Are there algorithmic considerations?Are there algorithmic considerations?

ÐÐ Are there external considerations?Are there external considerations?

¥¥ Must be within a userÕs attention spanMust be within a userÕs attention span

PthreadsPthreads

¥¥ POSIX standard for thread functionsPOSIX standard for thread functions

ÐÐ Thread managementThread management

ÐÐ Mutual exclusionMutual exclusion

ÐÐ Conditional variablesConditional variables

ÐÐ AttributesAttributes

¥¥ Only defined in COnly defined in C

F90 Pthreads APIF90 Pthreads API

¥¥ F90 subroutines interface C functionsF90 subroutines interface C functions

¥¥ ÔÔffÕ prefix to nameÕ prefix to name

ÐÐ fpthreadfpthread_create_create

ÐÐ Similar to PVM, MPISimilar to PVM, MPI

ÐÐ Error code as final argumentError code as final argument

¥¥ F90 module and C wrapper routinesF90 module and C wrapper routines

Problems ConsideredProblems Considered

¥¥ Matrix MultiplicationMatrix Multiplication

¥¥ Direct Solution of Linear SystemsDirect Solution of Linear Systems

ÐÐ GaussianGaussian Elimination and Back Substitution Elimination and Back Substitution

¥¥ Command, Control, Communication, andCommand, Control, Communication, and

Intelligence (C3I) BenchmarksIntelligence (C3I) Benchmarks

ÐÐ Map-Image CorrelationMap-Image Correlation

ÐÐ Terrain MaskingTerrain Masking

Project GoalsProject Goals

¥¥ Apply threaded programming techniques toApply threaded programming techniques to

scientific computationsscientific computations

¥¥ Demonstrate and exploit concurrency in numericDemonstrate and exploit concurrency in numeric

codescodes

¥¥ Achieve execution speed up with multipleAchieve execution speed up with multiple

threads/processorsthreads/processors

NOT a Project Goal...NOT a Project Goal...

To produce the fastest executingTo produce the fastest executing

versions of codes and algorithmsversions of codes and algorithms

examinedexamined

Our Emphasis:Our Emphasis:

¥¥How easy is the method to use?How easy is the method to use?

¥¥How much speed up might beHow much speed up might be

expected?expected?

Matrix MultiplicationMatrix Multiplication

¥¥ Sparse matrix-matrix multiplicationSparse matrix-matrix multiplication

¥¥ Row-major linked list data structureRow-major linked list data structure

ÐÐ Direct Methods for Sparse MatricesDirect Methods for Sparse Matrices by Duff, by Duff, Erisman Erisman and Reidand Reid

¥¥ IKJ loop structureIKJ loop structure

ÐÐ C(I, :) = C(I, :) + A(I, K) * B(K, :)C(I, :) = C(I, :) + A(I, K) * B(K, :)

ÐÐ IIthth row of C;row of C; K Kthth row of B row of B

ÐÐ Scalar from A (accessed across Scalar from A (accessed across IIthth row) row)

Thread AlgorithmThread Algorithm

While more rows to processWhile more rows to process

get next row number (lock shared counter)get next row number (lock shared counter)

for each element in row of A dofor each element in row of A do

copy appropriate row of B to local vectorcopy appropriate row of B to local vector

multiply vector by scalar from Amultiply vector by scalar from A

add results to local ÒsummationÓ vectoradd results to local ÒsummationÓ vector

add ÒsummationÓ vector to row of Cadd ÒsummationÓ vector to row of C

lock data structure to prevent overwritinglock data structure to prevent overwriting

1000x1000 Sparse Matrix Multiplication (< 10K NZ)1000x1000 Sparse Matrix Multiplication (< 10K NZ)
on SGI/Cray Origin 2000 (IRIX 6.4)on SGI/Cray Origin 2000 (IRIX 6.4)

of Threads Time (s econds)
1 0.259
2 0.261
4 0.261
8 0.264

16 0.270
32 0.301
64 0.324

128 0.364

Dense MatricesDense Matrices

¥¥ Not enough work in sparse caseNot enough work in sparse case

¥¥ IKJ loop structureIKJ loop structure

ÐÐ row-major accessrow-major access

¥¥ JKI loop structureJKI loop structure

ÐÐ C(:, J) = C(:, J) + A(:, K) * B(K, J)C(:, J) = C(:, J) + A(:, K) * B(K, J)

ÐÐ JJthth column of C; column of C; K Kthth column of A column of A

ÐÐ Scalar from B (accessed down Scalar from B (accessed down JJthth column) column)

1000x1000 Dense Matrix Multiplication1000x1000 Dense Matrix Multiplication
on SGI/Cray Origin 2000 (IRIX 6.4)on SGI/Cray Origin 2000 (IRIX 6.4)

of Threads IKJ Time
(se conds)

JKI Time
(seconds)

1 75.5 29.8
2 42.4 20.2
4 22.4 11.2
8 11.9 6.1

16 6.3 3.4
32 3.6 2.0
64 3.2 1.9

128 3.0 2.3

Solution of Linear SystemsSolution of Linear Systems

¥¥ Gaussian Gaussian Elimination with Back SubstitutionElimination with Back Substitution

ÐÐ simple method with row updatessimple method with row updates

ÐÐ diminishing amounts of workdiminishing amounts of work

Q: How do we distribute work evenly among threadsQ: How do we distribute work evenly among threads

throughout computation?throughout computation?

A: Cyclic distribution of rowsA: Cyclic distribution of rows

Cyclic Row PartitioningCyclic Row Partitioning

Apivot x b

 0

 0

 0

 0

 0

 0

 0

index

Thread AlgorithmThread Algorithm

do i = 1, NUMROWS

 if (i mod myid = = 0) then
 save pivot, row(i)
 else

 wait for pivot to be saved
 endif
 copy row(i), pivot to local row,

pivot
 do j = i+1, NUMROWS
 if (j mod myid = = 0) then

 compute row multiplier
 update row(j) with local row
 endif

 end do
end do

indx = NUMROWS
while (indx > 0)
 while (indx mod myid = = 0)

 fpthread_cond_wait
 compute x(indx)
 indx = indx - 1

 fpthread_cond_broadcast
end while

Cyclic Row PartitioningCyclic Row Partitioning

Apivot x b

 0

 0

 0

 0

 0

 0

 0

index

But What AboutÉBut What AboutÉ

¥¥ Column-Major ordering is Fortran standardColumn-Major ordering is Fortran standard

ÐÐ Helped with Matrix Multiply codeHelped with Matrix Multiply code

¥¥ Modify threaded algorithmModify threaded algorithm

ÐÐ Transpose A matrix after inputTranspose A matrix after input

¥¥ library routine is threadedlibrary routine is threaded

ÐÐ Swap A(i,j) indices for A(j,i)Swap A(i,j) indices for A(j,i)

Timing ResultsTiming Results

of Threads Row-Major Transpos e
Column-Major

1 6 72 16 2

2 7 35 23 2

4 5 56 11 5
8 10 30 10 0
1 6 16 42 14 7
3 2 16 67 13 1

F90 threaded Gaussian Elimination with back substitution

2000x2000 system of equations on SGI/Cray Origin2000

But What AboutÉBut What AboutÉ

¥¥ ...Memory contention of threads if matrices...Memory contention of threads if matrices

stored on a single processor?stored on a single processor?

ÐÐ Used Used _DSM_ROUND_ROBIN_DSM_ROUND_ROBIN to no significant effectto no significant effect

ÐÐ Used Used A(CYCLIC,*)A(CYCLIC,*) distribution to no significant effect distribution to no significant effect

¥¥ ...Distribution of threads to processors?...Distribution of threads to processors?

pthreadpthread__setconcurrencysetconcurrency

¥¥ SGI extension to PthreadsSGI extension to Pthreads

¥¥ Wrote F90 wrapperWrote F90 wrapper

¥¥ Set to number of threads executingSet to number of threads executing

Added Timing ResultsAdded Timing Results

o f Threads Row-Major Tr anspose
Column-Major

Transpose
fp_setconcurrency

1 67 2 1 62

2 73 5 2 32 1 25

4 55 6 1 15 6 8
8 10 30 1 00 2 6
16 16 42 1 47 5 3
32 16 67 1 31 6 4

F90 threaded Gaussian Elimination with back substitution

2000x2000 system of equations on SGI/Cray Origin2000

10K System of Equations10K System of Equations

¥¥ Transpose algorithmTranspose algorithm

ÐÐ 32 threads32 threads

ÐÐ 10144 seconds on Origin200010144 seconds on Origin2000

¥¥ Transpose with Transpose with setconcurrencysetconcurrency

ÐÐ 32 threads32 threads

ÐÐ 8608 seconds on Origin20008608 seconds on Origin2000

C3I BenchmarksC3I Benchmarks

¥¥ U.S. AFRL Information DirectorateU.S. AFRL Information Directorate

ÐÐ Rome Research Site (Rome Research Site (Griffis Griffis AFB)AFB)

¥¥ 10 non real-time C3I functions10 non real-time C3I functions

ÐÐ diversediverse

ÐÐ computationallycomputationally

ÐÐ challengingchallenging

ÐÐ representative of C3I systemsrepresentative of C3I systems

¥¥ Spec, sequential code, associatedSpec, sequential code, associated dataset dataset

Map-Image CorrelationMap-Image Correlation

¥¥ Surveillance data from remote sensorsSurveillance data from remote sensors

ÐÐ space-based infrared satellitesspace-based infrared satellites

ÐÐ remotely-piloted vehiclesremotely-piloted vehicles

ÐÐ intelligence photographsintelligence photographs

¥¥ Determine the alignment of features in the imagesDetermine the alignment of features in the images

with a detailed map of the areawith a detailed map of the area

¥¥ Potential for comparing ÒbeforeÓ and ÒafterÓ imagesPotential for comparing ÒbeforeÓ and ÒafterÓ images

Example ProblemExample Problem

Satellite photo (0900

hours)

Spy plane photo (1300

hours)

Translation

and

matching
code

Find matching rotation

of physical features

and realize a ship has
departed

Potentials for ConcurrencyPotentials for Concurrency

¥¥ Each image is independentEach image is independent

¥¥ 2-D Fast Fourier Transform2-D Fast Fourier Transform

ÐÐ Each column is independent 1-D FFTEach column is independent 1-D FFT

ÐÐ TransposeTranspose

ÐÐ Each column (original row) is independentEach column (original row) is independent

¥¥ FFT of finite number of rotations is independentFFT of finite number of rotations is independent

Thread AlgorithmThread Algorithm

Create thread for each image (both original and rotations):Create thread for each image (both original and rotations):

Discretize Discretize imageimage

For each column in image create thread for 1-D FFTFor each column in image create thread for 1-D FFT

Transpose image arrayTranspose image array

For each column in image create thread for 1-D FFTFor each column in image create thread for 1-D FFT

Join threadsJoin threads

Correlate images (using threaded Inverse Fourier Transform)Correlate images (using threaded Inverse Fourier Transform)

Implementation DetailsImplementation Details

¥¥ Two 1024x1024 GridsTwo 1024x1024 Grids

¥¥ Use 1-D FFT routine from Cray Use 1-D FFT routine from Cray Sci Sci LibLib

¥¥ Total of three 2-D Total of three 2-D FFTsFFTs

ÐÐ Two imagesTwo images

ÐÐ Inverse FFT for correlationInverse FFT for correlation

¥¥ Use Use pthreadpthread__setconcurrencysetconcurrency

Map-Image Timing ResultsMap-Image Timing Results

Single Threaded 2-D FFT (Cray Sci Library): < 2

seconds

Number of
threads 1 2 4 8 16 32 64

T ime (seconds) 155 85 47 28 19 14 16

Threaded Image Correlation of Two
1024x1024 grids on SGI Origin2000

Terrain MaskingTerrain Masking

¥¥ Used in aircraft flight mission computer systemsUsed in aircraft flight mission computer systems

to aid in attack, covert, and evasive flightto aid in attack, covert, and evasive flight

operationsoperations

¥¥ Compute evasive routes with low Compute evasive routes with low observabilityobservability

ÐÐ given a set of threats and their positionsgiven a set of threats and their positions

Problem DescriptionProblem Description

¥¥ Input:Input:

ÐÐ 2-D relief map (grid of surface elevations)2-D relief map (grid of surface elevations)

ÐÐ Position and range of Position and range of threatsthreats within region within region

¥¥ Output:Output:

ÐÐ Original map plus masking altitudesOriginal map plus masking altitudes

¥¥ minimum visible altitude at grid pointsminimum visible altitude at grid points

Threat Range and Line of SightThreat Range and Line of Sight

Within range and in line-
of-site

Enemy Sensor

Terrain

Masked

Masked

Concurrent Method 1Concurrent Method 1

For each threatFor each threat

determine range boundaries of threatdetermine range boundaries of threat

divide range into N sectorsdivide range into N sectors

create N threadscreate N threads

assign one per sectorassign one per sector

join threadsjoin threads

Sector Concurrency ModelSector Concurrency Model

Concurrent Method 2Concurrent Method 2

Determine number of sectors, NDetermine number of sectors, N

create M (number of threats) threadscreate M (number of threats) threads

do I = 1, Ndo I = 1, N

for each threat compute sector Ifor each threat compute sector I

lock potential overlap areaslock potential overlap areas

synchronize M threadssynchronize M threads

end doend do

Threat Concurrency ModelThreat Concurrency Model

Create and
use mutex
for each
overlapping
column

Terrain Masking ResultsTerrain Masking Results

NUMBER OF THREADS 1 2 4 8 16

T ime (minutes) 25 14 8 5.5 3.5

Terrain Masking Timing (in minutes) for 6000x6000

element grid with 90 threats on SGI Origin2000

With or without pthread_setconcurrency yielded
little difference.

ConclusionsConclusions

¥¥ Threaded codes can demonstrate speed-upThreaded codes can demonstrate speed-up

¥¥ Minor coding changes to add PthreadsMinor coding changes to add Pthreads

ÐÐ task parallelism or functional unitstask parallelism or functional units

¥¥ Able to take advantage of nested parallelismAble to take advantage of nested parallelism

¥¥ Must still be aware of architectural quirksMust still be aware of architectural quirks

ÐÐ cache access patternscache access patterns

ÐÐ data distribution and memory contentiondata distribution and memory contention

ÐÐ thread to processor mappingthread to processor mapping

