Application of Fortran Pthreads on Linear Algebra and Scientific Computing

Clay P. Breshears
Henry A. Gabb
Mark Fahey
USAE Waterways Experiment Station
Major Shared Resource Center

Acknowledgements

This work was funded by the DoD High Performance Computing Modernization Program CEWES Major Shared Resource Center through Programming Environment and Training (PET), Contract Number: DAHC 94-96-C0002, Nichols Research Corporation.

Introduction

- Last year: Introduced F90 Pthreads API
- This year: Are they really useful?
- How easy is programming?
- Can we get decent parallel performance?
- Are there algorithmic considerations?
- Are there external considerations?
- Must be within a user's attention span

Pthreads

- POSIX standard for thread functions
- Thread management
- Mutual exclusion
- Conditional variables
- Attributes
- Only defined in C

F90 Pthreads API

- F90 subroutines interface \mathbf{C} functions
- 'f' prefix to name
- fpthread_create
- Similar to PVM, MPI
- Error code as final argument
- F90 module and C wrapper routines

Problems Considered

- Matrix Multiplication
- Direct Solution of Linear Systems
- Gaussian Elimination and Back Substitution
- Command, Control, Communication, and Intelligence (C3I) Benchmarks
- Map-Image Correlation
- Terrain Masking

Project Goals

- Apply threaded programming techniques to scientific computations
- Demonstrate and exploit concurrency in numeric codes
- Achieve execution speed up with multiple threads/processors

NOT a Project Goal...

To produce the fastest executing versions of codes and algorithms examined

Our Emphasis:

-How easy is the method to use?
-How much speed up might be expected?

Matrix Multiplication

- Sparse matrix-matrix multiplication
- Row-major linked list data structure
- Direct Methods for Sparse Matrices by Duff, Erisman and Reid
- IKJ Ioop structure
- C(I,:) = C(I,:) + A(I, K) *B(K, :)
- $\mathbf{I}^{\text {th }}$ row of $\mathrm{C} ; \mathrm{K}^{\text {th }}$ row of B
- Scalar from A (accessed across $\mathrm{I}^{\text {th }}$ row)

Thread Algorithm

While more rows to process get next row number (lock shared counter)
for each element in row of A do
copy appropriate row of B to local vector multiply vector by scalar from A add results to local "summation" vector add "summation" vector to row of C lock data structure to prevent overwriting

1000×1000 Sparse Matrix Multiplication (< 10K NZ)

 on SGI/Cray Origin 2000 (IRIX 6.4)| \# of Threads | Time (seconds) |
| :---: | :---: |
| 1 | 0.259 |
| 2 | 0.261 |
| 4 | 0.261 |
| 8 | 0.264 |
| 16 | 0.270 |
| 32 | 0.301 |
| 64 | 0.324 |
| 128 | 0.364 |

Dense Matrices

- Not enough work in sparse case
- IKJ loop structure
- row-major access
- JKI loop structure
- C(:, J) = C(: J) + A(:, K) * B(K, J)
- $J^{\text {th }}$ column of $C ; K^{\text {th }}$ column of A
- Scalar from B (accessed down Jth column)

1000x 1000 Dense Matrix Multiplication

 on SGI/Cray Origin 2000 (IRIX 6.4)| $\#$ of Threads | IKJ Time
 (seconds) | JKI Time
 (seconds) |
| :---: | :---: | :---: |
| 1 | 75.5 | 29.8 |
| 2 | 42.4 | 20.2 |
| 4 | 22.4 | 11.2 |
| 8 | 11.9 | 6.1 |
| 16 | 6.3 | 3.4 |
| 32 | 3.6 | 2.0 |
| 64 | 3.2 | 1.9 |
| 128 | 3.0 | 2.3 |

Solution of Linear Systems

- Gaussian Elimination with Back Substitution
- simple method with row updates
- diminishing amounts of work

Q: How do we distribute work evenly among threads throughout computation?

A: Cyclic distribution of rows

Cyclic Row Partitioning

\square

Thread Algorithm

do $i=1$, NUMROWS
if (i mod myid $==\mathbf{0}$) then
save pivot, row(i)
else
wait for pivot to be saved
endif
copy row(i), pivot to local row, pivot
do $j=i+1$, NUMROWS
if ($\mathbf{j} \mathbf{~ m o d}$ myid $=\mathbf{=} \mathbf{0}$) then compute row multiplier update row(j) with local row endif
end do
end do
ind $=$ NUMROWS
while (indx >0)
while (indx mod myid $==0$)
fpthread_cond_wait
compute x (indx)
ind x = ind $x-1$
fpthread_cond_broadcast
end while

Cyclic Row Partitioning

pivot
A
X
b

\square

But What About...

- Column-Major ordering is Fortran standard
- Helped with Matrix Multiply code
- Modify threaded algorithm
- Transpose A matrix after input
- library routine is threaded
- Swap $A(i, j)$ indices for $A(j, i)$

Timing Results

F90 threaded Gaussian Elimination with back substitution 2000×2000 system of equations on SGI/Cray Origin2000

\# of Threads	Row-Major	Transpose Column-Major
1	672	162
2	735	232
4	556	115
8	1030	100
16	1642	147
32	1667	131

But What About...

- ...Memory contention of threads if matrices stored on a single processor?
- Used _DSM_ROUND_ROBIN to no significant effect
- Used A(CYCLIC,*) distribution to no significant effect
- ...Distribution of threads to processors?

pthread_setconcurrency

- SGI extension to Pthreads
- Wrote F90 wrapper
- Set to number of threads executing

Added Timing Results

F90 threaded Gaussian Elimination with back substitution 2000×2000 system of equations on SGI/Cray Origin2000

\# of Threads	Row-Major	Transpose Column-Major	Transpose fp_setconcurrency
1	672	162	
2	735	232	125
4	556	115	68
8	1030	100	26
16	1642	147	53
32	1667	131	64

10K System of Equations

- Transpose algorithm
- 32 threads
- 10144 seconds on Origin2000
- Transpose with setconcurrency
- 32 threads
- 8608 seconds on Origin2000

C3I Benchmarks

- U.S. AFRL Information Directorate
- Rome Research Site (Griffis AFB)
- 10 non real-time $\mathbf{C} 3$ functions
- diverse
- computationally
- challenging
- representative of C3I systems
- Spec, sequential code, associated dataset

Map-Image Correlation

- Surveillance data from remote sensors
- space-based infrared satellites
- remotely-piloted vehicles
- intelligence photographs
- Determine the alignment of features in the images with a detailed map of the area
- Potential for comparing "before" and "after" images

Example Problem

Potentials for Concurrency

- Each image is independent
- 2-D Fast Fourier Transform
- Each column is independent 1-D FFT
- Transpose
- Each column (original row) is independent
- FFT of finite number of rotations is independent

Thread Algorithm

Create thread for each image (both original and rotations):
Discretize image
For each column in image create thread for 1-D FFT
Transpose image array
For each column in image create thread for 1-D FFT
Join threads
Correlate images (using threaded Inverse Fourier Transform)

Implementation Details

- Two 1024×1024 Grids
- Use 1-D FFT routine from Cray Sci Lib
- Total of three 2-D FFTs
- Two images
- Inverse FFT for correlation
- Use pthread_setconcurrency

Map-Image Timing Results

Threaded Image Correlation of Two 1024x 1024 grids on SGI Origin2000

Number of threads	1	2	4	8	16	32	64
Time (seconds)	155	85	47	28	19	14	16

Single Threaded 2-D FFT (Cray Sci Library): < 2 seconds

Terrain Masking

- Used in aircraft flight mission computer systems to aid in attack, covert, and evasive flight operations
- Compute evasive routes with low observability
- given a set of threats and their positions

Problem Description

- Input:
- 2-D relief map (grid of surface elevations)
- Position and range of threats within region
- Output:
- Original map plus masking altitudes
- minimum visible altitude at grid points

Threat Range and Line of Sight

Concurrent Method 1

For each threat
determine range boundaries of threat
divide range into N sectors
create N threads
assign one per sector
join threads

Sector Concurrency Model

Concurrent Method 2

Determine number of sectors, N
create M (number of threats) threads
do $\mathrm{I}=1, \mathrm{~N}$
for each threat compute sector I lock potential overlap areas
synchronize M threads
end do

Threat Concurrency Model

Create and use mutex for each overlapping column

Terrain Masking Results

Terrain Masking Timing (in minutes) for $\mathbf{6 0 0 0 \times 6 0 0 0}$ element grid with 90 threats on SGI Origin2000

NUMBER OF THREADS	1	2	4	8	16
Time (minutes)	25	14	8	5.5	3.5

With or without pthread_setconcurrency yielded little difference.

Conclusions

- Threaded codes can demonstrate speed-up
- Minor coding changes to add Pthreads
- task parallelism or functional units
- Able to take advantage of nested parallelism
- Must still be aware of architectural quirks
- cache access patterns
- data distribution and memory contention
- thread to processor mapping

