sgi

Silicon Graphics Scientific Library Update

Mimi Celis

celis@sgi.com

telken@sgi.com

Supercomputing Applications Silicon Graphics, Inc.

41st Cray User Group Conference Minneapolis, Minnesota

Contents

sgi

- Scientific Libraries available on SGI hardware
- SCSL Scientific Library

 (like "SGI", "SCSL" doesn't mean anything ;-))
- SCSL Release 1.2
- Signal Processing in SCSL 1.2
- Performance
- Special Solvers in SCSL 1.2
- Future

Scientific Libraries on SGI

There are "many" scientific libraries available on SGI platforms today.

- LibSci on Cray platforms.
- CHALLENGEcomplib on IRIX platforms. (libcomplib.sgimath,libblas)
 - Part of the IDO in IRIX 6.4 and older
 - Part of the IRIX development libraries in IRIX 6.5
 - Version 3.1
- SCSL on IRIX platforms.
 - Unbundled product
 - Available for IRIX 6.4 and newer
 - Version 1.1

SCSL Scientific Library

sgi

- SCSL is a scientific and math library
- SCSL is (initially) available on IRIX 6.4 and 6.5 systems
- SCSL will become the standard scientific library on all SGI platforms
- SCSL will merge the important functionality of CHALLENGEcomplib and LibSci into one library
- SCSL will provide a new library with more functionality and better performance than either library by itself.

SCSL Contents

sgi

BLAS (Basic Linear Algebra Subprograms).

- BLAS1–Vector–vector operations
- BLAS2-Matrix-vector operations
- BLAS3-Matrix-matrix operations

• LAPACK

- Symmetric and Nonsymmetric linear systems of equations
- Symmetric and Nonsymmetric eigenvector/value
- Singular Value Decomposition
- Linear Least Squares

BLAS and LAPACK developed at the University of Tennessee.

SCSL Contents (continued)

sgi

Sparse Linear Equation Solvers

- Symmetric linear systems of equations
- Nonsymmetric linear systems of equations (NO pivoting)
- FFTs
 - multiple one-dimension mixed radix
 - one-,two-and three-dimension mixed radix
 - single-and double-precision, for both real and complex data types

Sparse solvers and FFTs were developed at SGI. (There is no defacto standard API).

How to use SCSL

sgi

Documentation in form of man pages:

- intro_libscsl
- intro_blas1, _blas2, _blas3
- intro_fft
- intro_lapack
- intro_sparse (soon)
- these will point you to more detailed man pages

• Linking:

- Serial: -lscs
- OpenMP or libmp parallel:

-lscs_mp -mp

SCSL Release 1.2

sgi

SCSL 1.1 is the current release. Release 1.2 will be the next SCSL release.

Goals for 1.2:

- Add the missing complib Signal Processing functionality.
- Provide C language interfaces for the Signal Processing routines.
- Enhance the ordering techniques in the sparse linear solvers.
- Performance tuning for the MIPS R12000 Processor.
- Rollup bug fixes from SCSL 1.1 and complib 3.1.

SCSL 1.2 will be released with IRIX 6.5.5 (late July 1999).

SCSL Release 1.2 (continued)

SCSL 1.2 is the follow–on to CHALLENGEcomplib with some exceptions:

- SCSL 1.2 will NOT include o32 versions of the libraries.
- SCSL 1.2 will NOT support LINPACK and EISPACK.
- SCSL 1.2 will run on all platforms that have n32 or 64 support.

CHALLENGE complib is available to run on older and current platforms, however:

- There will be no further releases of complib.
- No complib bugs fixes (with rare exceptions).

Signal Processing for SCSL 1.2

Additions to the FFTs:

- multiple 1D routine which calculates an FFT in one dimension for each row of a two-dimensional matrix.
- 1D, 2D and 3D routines that compute the product of the Fourier Transform of a sequence with the Fourier Transform of a filter (*prod routines in complib).
- Functions will be introduced to release memory allocated within the FFT routines.
- C language bindings.

Signal Processing for SCSL 1.2 (continued)

sgi

SCSL 1.2 will include convolution and correlation routines.

- Convolution for Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, together with Correlations.
- 1D and 2D convolution and correlation Single and double precision for real and complex arithmetic.
- 2D routines will run on multiple processors.
- API similar to complib API (but not fully compatible).
- Fortran and C language bindings.

The two main goals of the Convolution and Correlation library are performance *and* generality. *It provides well tuned modules usable in most convolution and correlation instances.*

Performance

sgi

• BLAS

- Fast Fourier Transforms
- Sparse Solver

BLAS Performance

sgi

DGEMM Performance

BLAS Performance

. .

sgi

DGEMV Performance

BLAS Performance

sgi

DGEMM Parallel Performance

Number of processors

Fast Fourier Transforms (FFT)

sgi

- I-Dimensional FFT applications:
 - Seismic: many short FFTs (1024–4096 data points)
 - Sonar, radar cross-section, speech recognition and astronomical systems: large 1D FFTs

Multi-dimensional FFTs:

- image processing
- PDEs from CFP applications

Following charts show "effective megaflop rate" based on 5n*log(n) for each complex-to-complex FFT.

sgi

1D Complex-complex FFT

FFT size

FFT performance

sgi

Complex-complex Multiple 1D FFT

FFT performance

sgi

2D Complex-complex FFT

FFT parallel performance

sgi

Complex-complex Multiple 1D FFT

"1024-single" means 1024 copies of a size 1024 single precision (32 bits) FFT

Changes to SGI Sparse Solvers

New Matrix Ordering Options

- Methods 3 and 4 are termed "Extreme2" ordering
- New default for ordering option
 - Extreme ordering (Method 2) is now the default
- Out-of-core solver option
 - Was in recent SCSL version, but now is documented
 - Single-processor only
 - Striped file system useful
 - Simple interface and performs well

New ordering options

sgi

- 3. Multiple Nested Dissection orders
- default is OMP_NUM_THREADS orders
- repeatable quality

4. Multiple ND orders using feedback file information

- default is 2 x OMP_NUM_THREADS orders
- feedback file is at most 5KB, up to 200 records
- binary feedback file
- a solver that learns

Choosing a default method

- Should default be best for which size model?
- Decided to optimize for medium or larger problems (at least 5000 equations)
- Extreme2 (3) about 3% faster than Extreme, but is new tech., so we use Method 2 as the new default.

Out-of-core (OOC) Option

- Performance 10–40% slower than extreme (Method 2) ordering in– core; 15% in this case.
- but faster than AMF (1)
- This used 4-way striping on file system -- 140 MB/s on some reads
- Allowed 128MB in-core for factor storage

Total Time for Nine models (1-CPU runs)

Storage

Scalability: Factorization Mflops

- Amdahl's law resp. for much of lack of scaling in previous chart
- Over 11 Gflops achieved on gismondi on 48 CPUs
- More can be done to improve memory placement
- These results used DSM_ROUND_ROBIN data placement

PSLDLT: Scalability to 8 CPUs

Summary

• SCSL 1.2 improvements:

- FFTs have new interface
- Add the missing complib Signal Processing functionality.
- Provide C language interfaces for the Signal Processing routines.
- Enhance the ordering techniques in the sparse linear solvers.
- Performance tuning for the MIPS R12000 Processor.
- Rollup bug fixes from SCSL 1.1 and complib 3.1.
- Comments, questions:
 - Mimi Celis; celis@sgi.com
 - Tom Elken; telken@sgi.com