
A Solver That LearnsA Solver That Learns

Tom Elken
Member of Technical Staff: Math Libraries

Silicon Graphics, Inc.

41st Cray User Group

Conference

Minneapolis, Minnesota

2

OverviewOverview

¥ Sparse linear solvers at SGI

¥ Matrix ordering options

¥ New ordering options

¥ Performance results

¥ Other Enhancements to Sparse Solver

¥ Ideas for the Future

¥ (much of this was joint work with Cheng Liao, SGI)

3

Sparse linear solvers at SGI

 SCSL / complib

¥ PSLDLT: symmetric

¥ PSLDU: structurally symmetric

 On DeveloperÕs Toolbox:

¥ sparse iterative solver

 LIBSCI (PVP)

¥ iterative, symmetric, structurally symmetric
and general solvers

4

Sparse linear solvers at SGI

¥ Introduced ~1995

¥ First offered to ISVs as static libraries to
enhance applications

¥ Sometimes offered 5-10x advantage

¥ Added to complib and then SCSL

¥ Now, public domain versions exist & they are an
industry standard

¥ Need to keep enhancing them

5

What is sparse-matrix ordering?

¥ In solving Mx=b, first factor M into LDLT.
Lij entries can become non-zero when Mij are zero.

¥ Solve by solving Lz=b; Dy=z; LTx=y .

¥ Fill (non-zeroes) can be up to 50X in L compared to M.

¥ Factoring a permuted matrix PMPT can dramatically
reduce the work to factorize M. A permutation is a re-
ordering.

6

PSLDLT/PSLDU ordering options

 0. No re-ordering

 1. Approximate Minimum Fill (AMF)

¥ fairly fast ordering, moderate quality

 2. Nested Dissection Hybrid

¥ Ed Rothberg & Bruce Hendrickson original
authors

¥ AKA: Extreme ordering or BEND

¥ more ordering time, better quality

7

Algorithmic ideas

¥ Finding the best ordering of rows is an NP-complete
(very difficult) problem

¥ Currently, matrix ordering is a serial computation

¥ Very different quality of orders can be produced
using different Òstarting pointsÓ

¥ ==> Do more orders using embarrassing parallelism
& use the best

¥ Internally referred to as Extreme2 ordering

8

New ordering options

 3. Multiple Nested Dissection orders

¥ default is OMP_NUM_THREADS orders

¥ repeatable quality

 4. Multiple ND orders using feedback file

information

¥ default is 2 x OMP_NUM_THREADS orders

¥ file is at most 5KB, up to 200 records

¥ feedback file is binary

¥ A solver that learns

9

Other Changes to SGI Sparse Solvers

¥ New default for ordering option
Ð Extreme ordering (Method 2) is now the default

¥ Out-of-core solver option
Ð Was in recent SCSL version, but now is documented
Ð Single-processor only
Ð Striped file system useful
Ð Simple interface and performs well

10

Choosing a default method

¥ Should default be best for
which size model?

¥ Decided to optimize for
medium or larger
problems (at least 5000
equations)

¥ Extreme2 (3) about 3%
faster than Extreme, but is
new tech., so we use
Method 2 as the new
default.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

Ordering Method

Total Time for Nine models

11

Out-of-core (OOC) Option

¥ Performance 15% slower
here than extreme
(Method 2) ordering in-
core...

¥ but faster than AMF (1)

¥ This used 4-way striping on
file system -- 140 MB/s on
some reads

¥ Allowed 128MB in-core for
factor storage

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 OOC
Ordering Method / Factor

Storage

Total Time for Nine models
(1-CPU runs)

12

New Sparse Solver
Environment Variables

¥ SPARSE_NUM_ORDERS can be used to change the number of

orderings performed from the default of

2*OMP_NUM_THREADS; Examples:

Ð Ôsetenv SPARSE_NUM_ORDERS 100Õ to get a best-case ordering
information into the feedback file

Ð Ôsetenv SPARSE_NUM_ORDERS 1Õ when you have run a number
of matrix orderings already (with method=4)

¥ SPARSE_FEEDBACK_FILE can be set to the path and file
name where the feedback information will be kept. The

default feedback file used otherwise is

$HOME/.sparseFeedback.

13

Comparison of ordering methods

¥ Structural model with ~36K degrees of freedom

¥ Shows extra ordering time for new options

¥ Time reflects 1 preprocess, 4 factorizations & 2 solves

¥ Ò4 with historyÓ ==> Ôsetenv SPARSE_NUM_ORDERS 1Õ since

already have good info in SPARSE_FEEDBACK_FILE

Matrix BCSSTK01 nnzAA':1906964, n:35991 R10K/250
Total time

CPUs 1 2 3 4 4 w/ hist 4h v. 2
1 71 60 50.1 47.7 45.7 1.31
2 44.6 34.5 29 28.9 28.9 1.19
4 26.8 23.8 22.3 21.2 19.7 1.21

Ordering time
CPUs 1 2 3 4 4 w/ hist

1 1.4 1.5 1.9 2.8 1.9
2 1.5 1.6 2.2 3 1.9
4 1.4 1.7 3.2 3.9 2.4

Ordering
method

14

Using the learning

¥ After doing a 4, 2 and 1
thread solves (history of 14
orderings), repeat using
Ôsetenv
SPARSE_NUM_ORDERS 1Õ

¥ Small advantage on these 9
matrices, more results
shown soon.

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4

4/
hi

st
.

Ordering Method

Total Time for Nine models
(1, 2 & 4 CPU runs)

15

Performance Results

 Overview

¥ Applications already integrating new solver:
Ð Abaqus
Ð CPLEX

¥ PSLDLT performance
Ð Case study
Ð Large / dense model scalability

¥ Comparison to a public domain solver --

SPOOLES

16

ABAQUS: first to use

 Uses a default of 36 orderings

¥ Can be changed (BEST_HIGH env var)

¥ Best seed can be output by setting
DUMP_EXTREME_INFO

¥ Seed can be input by SEED env var

 ABAQUS a good use of this technology

¥ one ordering is used hundreds of times

17

ABAQUS Performance

¥ 12 of 28

benchmarks

shown here

¥ Extreme2 shows:

18%

improvement
over extreme;

10%

improvement

over METIS
(public domain

S/W)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

be
nc

h_
3d

_1
60

bm

14

lga
st

lgm
st

na
s1

na

s2

na
s3

p2

g8
t43

W
a2

2_
sm

60
S

be
nc

h_
2d

ro

ad
sh

k
sh

ell
cu

be

fa
ct

o
ri

za
ti

o
n

 s
p

ee
d

u
p

vs. metis
vs extreme

18

Performance Results:
as a CPLEX add-on

0.00 0.50 1.00 1.50 2.00 2.50

gismondi

23-Dec

dfl001

dx2219

pds-20

a15pre

sps83

swest

t20.6k

riad0

cypress

CPLEX 6.X / CPLEX6.5_SGIextreme2

 6.0

6.5

¥ ILOG provides

ordering ÔhookÕ so

customer can link SGI
extreme2 matrix

ordering w/ CPLEX 6.5.

¥ Speedups vary from
nothing to ~2x.

Average 16% over

default 6.5 on this set

of (mostly high fill-in)
models -- 25% over

CPLEX 6.0

¥Uses a ÔhistoryÕ of 50

orderings.

19

PSLDLT: Scalability to 8 CPUs

¥ Measured: Elapsed time

for 1 preprocess, 2

factorizations, 2 solves.

¥ # f.p. ops to factor &

preprocess time :

Ð Gflop secs.
Ð fleet10 383 27
Ð gismondi 133 3
Ð th2 34 18
Ð 280Kdof 18 15

0

1

2

3

4

5

6

7

0 2 4 6 8 10

of CPUs

S
p

ee
d

u
p

fleet10

gismondi

th2

280Kdof

20

Scalability: Factorization Mflops

¥ AmdahlÕs law resp. for

much of lack of scaling

in previous chart

¥ Over 11 Gflops

achieved on gismondi

on 48 CPUs

¥ More can be done to

improve memory

placement

¥ These results used

DSM_ROUND_ROBIN data

placement 0

500

1000

1500

2000

2500

3000

3500

0 5 10

of CPUs

F
ac

to
ri

za
ti

o
n

 M
fl

o
p

s

gismondi

fleet10

th2

280Kdof

21

PSLDLT Perf. Results

0 0.5 1 1.5 2

BCSSTK01

dx2219

copter

dfl001

CRYSTK03

GISMONDI

Speedups of Method 4 vs. 2

4 CPUs

2

1
Extreme2 with

feedback (method 4)

vs. old extreme

speedups

Speedups can vary

by #CPUs based on

how super-nodes

split into panels

22

A Public Domain Alternative

 SPOOLES Library: Sparse Object-Oriented Linear
Equation Solver

¥ As Object-Oriented as C allows

¥ Solves Real/Complex, Symmetric/Non-symm.

¥ With or without pivoting for stability

¥ Serial or Parallel (Pthreads or MPI)

Comes with various example programs -- the following

results are from the LinSol MT wrapper object and driver

23

Factorization comparison

36
Kdo

f-1
36

Kdo
f-4

3D
TU

BE-1
3D

TU
BE-4

A15
-1

A15
-4

SPOOLES
PSLDLT0

500

1000

1500

2000

Factorization Mflops

¥ PSLDLT faster on 1-CPU

and better scalability

Ð (in chart,
-1 ==> 1 CPU
-4 ==> 4 CPUs)

¥ A15 has a few large,

dense supernodes -
PSLDLT has been

designed to handle

¥ Not a fair comparison:

Ð PSLDLT has kernels (in C)
hand-optimized for
MIPS CPUs & large
caches;

Ð SPOOLES is more
general; has pivoting
option

24

Triangular Solve Comparison

¥ SPOOLES about
twice as fast on the
solve after the
factorization

¥ Solve time is small
% of total:
Ð 1.5% (SPOOLES)
Ð 5% (PSLDLT)

¥ We have some

work to do
0 1 2 3

3DTUBE-4

3DTUBE-2

3DTUBE-1

36Kdof-4

36Kdof-2

36Kdof-1

elapsed seconds

PSLDLT
SPOOLES

25

Preprocessing comparison

¥ Time: PSLDLT -Method 3 - does 1 ordering per thread & is

generally faster; SPOOLES/LinSol uses 2 methods in serial

¥ Quality: PSLDLT (3) generally fewer factorization ops and

can improve with more threads

SPOOLES PSLDLT SPOOLES PSLDLT
Matrix CPUs

36Kdof 1 2.61 1.40 3.60 3.96
2 2.61 1.60 3.60 3.96
4 2.67 2.15 3.60 3.73

3DTUBE 1 6.95 3.18 13.60 12.10
2 6.96 3.64 13.60 12.10
4 6.95 4.33 13.60 12.00

TH2 1 47.52 12.41 38.90 35.80
2 45.14 14.25 38.90 33.80
4 47.41 17.08 38.90 30.50

elapsed seconds factor ops (billions)

26

Summary

¥ New default ordering option: Extreme (big
speedups for larger/denser models)

¥ New matrix ordering option: Extreme2
Ð Primarily useful when many factorizations will be done

on one non-zero structure

¥ Out-of-core capabilities available (single-

processor)

27

Possible futures for sparse solvers

¥ Tuning & algorithm improvements:
Ð ordering and factorization scalability
Ð triangular solve performance

¥ General sparse solver with pivoting?

¥ Port to IA-64 & IA-32? Linux or NT?

¥ Hybrid direct / iterative methods

