
WhatÕs New in the Message-Passing Toolkit

Karl Feind, Message-passing Toolkit Engineering Team, SGI

ABSTRACT: SGI message-passing software has been enhanced in the past
year to support larger Origin 2000 systems and clusters, to provide more of the
MPI-2 API, and to enhance performance. Several Message-passing Toolkit
(MPT) product releases went out in the past year to deliver the new functionality
and performance. Other current issues of importance for message-passing
users are also discussed.

Introduction
This paper will describe significant enhancements to SGI’s message-passing software from June
1998 to May 1999. Message-passing is a style of parallel programming which uses fast library
calls to provide communication between cooperating parallel processes which are usually
engaged in CPU-intensive work. SGI-supported message-passing application programming
interfaces (APIs) include MPI, SHMEM, and PVM. All three APIs are packaged with the
Message-Passing Toolkit (MPT) on IRIX and UNICOS systems. On UNICOS/mk systems
SHMEM is packaged in the programming environments, but MPI and PVM are delivered with
MPT. See the SGI MPT web page at http://www.sgi.com/software/mpt/ for more background and
description of SGI message-passing software.

MPT releases in the past year included 1.2.1 in June 1998, 1.3 in February 1999, and several
update releases in between. These releases provide a balance between performance and
functionality on all supported SGI and Cray computer systems. Our goal is to provide message-
passing implementations, which expose the high performance SGI computer systems on which it
runs, while adhering to industry standards for MPI and PVM. At the same time we continue to
support the proprietary SHMEM message-passing API both as a high performance stand-alone
API as well as a high performance extension to the MPI API.

In the sections that follow, some feature highlights are described for the recent MPT releases.
This discussion will only touch the surface; for more detailed information, consult the MPT release
documentation or the above-listed MPT web page.

MPT 1.2.1 Highlights
The MPT 1.2.1 release was made available in June
1998. This release contained a number of significant
fixes and features on IRIX, UNICOS, and UNICOS/mk
systems.

Prior to MPT 1.2.1, UNICOS and UNICOS/mk systems
permitted the use of MPI and SHMEM in the same
application, but IRIX systems did not. The MPI and
SHMEM APIs both provide communication between a
set of processes with identifiers, or ranks, in a
contiguous range from 0 to N-1. Therefore it is natural
for MPI and SHMEM to be peer APIs which provide
communication between the same set of processes. The
MPT 1.2.1 release added interoperability of MPI with
SHMEM on IRIX systems.

In mid 1998, the IRIX Miser resource manager was

Optimizing MPI Programs with SHMEM:
A Case Study

The Code

An SGI applications analyst in Eagan was
optimizing a spectral climate model running on
the Origin 2000..

The Optimization

Replace MPI calls in a transpose loop with
SHMEM put/get communication calls.

The Result

The overall code speedup by 20%

being developed and stabilized to be usable for scheduling highly parallel programs, and MPT
was enhanced at this time to permit the use of Miser to schedule MPI jobs. An update on the
stabilization of Miser can be found later in this paper.

MPT 1.3 Highlights
Released in February 1999, MPT 1.3 contained enhancements in the areas of large cluster
support, performance optimizations, usability improvements, interoperability, and support for
more of the MPI-2 standard API.

Large Cluster Support

The MPI enhancement to support Origin 2000 clusters of up to 6144 processors on 48 hosts were
accomplished through restructuring of the internal buffering algorithms and adding support for
multiple HIPPI adapters in the same MPI job. If an MPI job can use more than one HIPPI adapter
per host and multiple HIPPI switches, two benefits are seen. First of all, connectivity to more
remote hosts can occur because of HIPPI switch port limits. Secondly, higher aggregate system
bandwidth can be achieved when multiple switches provide alternate data paths between hosts.

Performance Improvements

The MPI_Barrier operation on Origin 2000 systems was optimized to use the same fetch-op
barrier algorithm as is used by SHMEM. This provided a dramatically faster MPI_Barrier. This
effort was the beginning of a continuing effort to improve the performance of MPI collective
communication on IRIX systems.

Usability Enhancements

A number of features in MPT 1.3 for IRIX systems helped users diagnose program errors.
Program launch errors had not been well reported in the past, but enhancements to MPI and
Array Services 3.2 improved matters significantly. Now most common program launch errors are
diagnosed with a meaningful error message.

Another class of Fortran MPI program error can now be detected at compile time. The C
Programming language has long provided compile-time checking for the number and type of
function arguments through the use of prototypes in C header files. The Fortran 90 standard has
more recently provided the same capability through use of interface modules. MPI and SHMEM
now both provide interface modules which Fortran programmers can use without any changes to
portable FORTRAN 77 or Fortran 90 MPI or SHMEM source code. To activate the compile-time
interface checking, use the f90 compiler and the following command-line option:

-auto_use mpi_interface,shmem_interface

The MPI-2 Standard defines a similar capability which is activated when the MPI module is
imported on a USE statement. Unlike SGI's current implementation, the standard-defined
capability requires changes to existing MPI-1-conformant programs.

Performance Analysis and Debugging

The –stats option on the mpirun command causes a statistics report to be printed at MPI
program termination. These statistics characterize the types and quantity of MPI
communication—point-to-point, collective, inter-host, intra-host—for every process in the MPI
program.

Additional debugging support was provided through increased interoperability with the Totalview
debugger. MPT on UNICOS systems added basic support for the Totalview debugger. MPT on

IRIX systems enhanced its interoperability with Dolphin Totalview to permit the display of
message queues.

MPI-2 API Support

Although many MPI users are content with the scope of the MPI-1 API, increasing numbers of
users are requesting some of the functionality defined by the MPI-2 standard. In MPT 1.3 we
provided most of the MPI-2 I/O API for IRIX and UNICOS/mk systems. This was done by taking
version 1.0.1 of the ROMIO public domain implementation of MPI-2 I/O and integrating it into our
MPI libraries.

MPI thread support, defined as an optional capability in the MPI-2 standard, was added on IRIX
systems. This functionality will be useful to some users who wish to use thread parallelism and
message-passing process parallelism in the same application.

MPT 1.3.0.1 Highlights

The MPT 1.3.0.1 update was released in May 1999. A variety of features and bug fixes are
available in this release. CRAY SV1 cache and memory system support is enhanced in
SHMEM. This was significant because previously supported CRAY YMP and CRAY J90 systems
had not activated data cache in message-passing programs. The other significant enhancement
in this release was on IRIX systems where the MPI_Alltoall collective communication function
was enhanced. More discussion of this will follow in the next section.

High Performance Message Passing

On CRAY T3E systems, many parallel programmers use the SHMEM API to get the best point-to-
point and collective communication performance. The SHMEM API is a thin veneer layered on
top of remote and local memory copy primitives. SHMEM's thin veneer and high performance are
also available on Origin 2000 systems, but for various reasons proportionally more Origin 2000
users than CRAY T3E users are
preferring industry standard APIs
like MPI. In part this is because
MPI supports clustered systems,
whereas SHMEM is supported
only on systems with globally
available direct memory access
(DMA) capability. This section
describes a few ways SGI’s MPI
on IRIX systems has been
enhanced to provide MPI users
with better performance

One strategy towards high
performance computing is higher
levels of parallelism. Parallelism
on Origin 2000 clusters was
pushed to a new level in MPT 1.3
with the support for larger clusters.
In late 1998 the LINPACK

LANL Origin 2000 Cluster
Configuration

16 way HIPPI-800
switches
and the SPPM benchmark
led to this topology

There are 36 separate
networks with 576 HIPPI
adapters.

Inside each 8 host
cluster, the connectivity
is 12. Going outside a
cluster, connectivity
drops to 4 or 2.

= 8 x128 O2000
= 32 connections +
2 HIPPI switches

Figure 1

benchmark was run on a 40-host Origin 2000 cluster at Los Alamos National Laboratory (LANL).
LINPACK was run on 5040 processors and achieved 1.6 Tflops. This LINPACK run was one step
in our process of stabilizing MPI support for large clusters.

Another strategy for improving performance of highly parallel codes is to optimize communication.
The MPI collective communication routines are defined in a way, which is conducive to
architecture-specific optimizations within an MPI implementation. In MPT releases 1.3 and
1.3.0.1, the MPI_Barrier and MPI_Alltoall operations on IRIX systems are optimized to
take better advantage of underlying hardware capabilities.

MPI_Barrier Optimization

Prior to MPT 1.3, MPI_Barrier used a portable algorithm layered on MPI send and receive
calls. In MPT 1.3 a two-fold strategy was used to improve MPI barrier performance. For
programs running on a single host, an MPI-aware version of SHMEM’s fetch-op barrier was used.
For programs running on multiple hosts, the processes on each host synchronized with each
other, and then faster cross-host barrier synchronization was performed using just one
representative process from each host. The resulting MPI barrier performance improved by
several orders of magnitude for some common cases.

Origin 2000 MPI_Barrier Time in Microseconds
Hosts x Processes Prior to Optimization With Optimization Improvement
1 x 64 3140 10 300 x
1 x 128 24000 26 1000 x
2 x 4 670 174 4 x
4 x 16 26000 994 26 x

MPI_Alltoall Optimization

A somewhat similar approach was taken in MPT 1.3.0.1 to improve the performance of
MPI_Alltoall . For programs running within a single host, the collective operation detected
cases where the send or receive buffer was in a remotely accessible data area as defined in the
shmem(3) man page.. For Fortran programs, this includes common blocks and memory
allocated by SHPALLOC(3). For C programs, static data and memory allocated with
shmalloc(3) is remotely accessible. When remotely accessible send or receive buffers are
detected, the MPI_Alltoall operation is performed by simple memory copies.

MPI All-to-all Execution Time

0

1

2

3

4

5

Time (sec)

Processes

4 Kbyte Messages on 256 P Origin 2000

MPT 1.3.0.0 0.11 0.61 1.4 2.34 4.2
MPT 1.3.0.1 with
MPI_STATIC_MAP

0.002 0.003 0.012 0.022 0.031

50 100 150 200 250

MPI All-to-all Execution Time

0

5

10

15

20

Time (sec)

Processes

4 Kbyte Messages on Origin 2000 Cluster

MPT 1.3.0.0 0.33 6.45 18.00
MPT 1.3.0.1 0.14 0.30 0.59

2 x 25 3 x 25 4 x 25

Figure 2 Figure 3

The single-host optimization yielded performance improved by several orders of magnitude, as
shown by the table and graph in figure 2.

This optimization is activated by setting the MPI_STATIC_MAP environment variable in the
current MPT release. In future releases we plan to activate the optimization by default, to extend
the optimization to send and receive buffers allocated by the Fortran 90 ALLOCATE statement,
and to use a similar approach to optimize the other MPI collective operations.

A multi-host MPI_Alltoall optimization was accomplished by finding a way to send fewer
messages of larger size between the hosts. Inter-host communication via HIPPI has a
noticeable latency penalty while providing very good peak bandwidth. The optimized algorithm
first exchanged the data between hosts. Then several intra-host all-to-all operations shifted the
data around into its final location. Figure 3 shows the dramatic performance improvement.

The improved all-to-all performance resulted in highly improved NAS Parallel benchmark
performance. The class B FT benchmark was run with and without the optimization. Figures 3
and 4 show the improved performance.

Scheduling Message Passing Programs on IRIX Systems

In a time-shared environment, highly parallel applications using MPI or SHMEM message passing
or OpenMP are best scheduled using a synchronizing scheduler like Miser. When Miser
schedules all processes in the application to execute at the same time several important benefits
are achieved. Most parallel applications are synchronized single-program, multiple data (SPMD)
programs. Thus an early start for a subset of processes in the parallel job only leads to more wait
time, often spin wait time, while the early starters wait for the late-starting processes to catch up.

Failure to use synchronized scheduling results in performance non-repeatability and poor system
throughput of parallel jobs. Performance non-repeatability means that the real time to completion
for the application as a whole will be much different in a time-shared environment when
compared with a dedicated system. Lower system throughput arises because the waiting
processes consume system memory for a longer period, and the spin waiting consumes CPU
time that could otherwise be allocated to processes ready to do user computation.

In IRIX 6.5.4, which was made available to customers in May 1999, Miser has enhanced stability
and functionality which helps message passing users on time-shared systems to get the
synchronized scheduling they need. SHMEM programs can be scheduled with Miser using this
type of command line:

NAS Parallel FT Execution Time

0
100
200
300
400
500
600
700
800
900

1000

Time (sec)

2 x 8 2 x 32 2 x 128

Hosts x Processes

FT class B on Origin 2000 Cluster

MPT 1.3.0.0

MPT 1.3.0.1

A
bo

rt
ed

NAS Parallel FT Execution Time

0
20
40
60
80

100
120
140
160
180
200

Time (sec)

16 64 256

Processes

FT class B on 256 P Origin 2000

MPT 1.3.0.0

MPT 1.3.0.1 with
MPI_STATIC_MAP

Figure 4 Figure 5

setenv NPES 64
miser_submit -q default -o c=64,m=4g,t=10h,static a.out

MPI programs can be scheduled with Miser using this type of command line:

miser_submit -q default -o c=64,m=4g,t=10h,static \
mpirun -miser -np 64 a.out

See the paper IRIX Resource Management Plans and Status in these CUG proceedings for more
information about Miser.

Message-Passing Future Plans

Message passing enhancements planned for the year ahead have several themes--performance
enhancements, new hardware support, and continued phase-in of more of the MPI-2 API. The
following table summarizes the expected timetable for new message passing features.

Date Release Feature
October
1999

MPT 1.4 HIPPI Resiliency Support for Large Origin Clusters
MPI Support for CRAY SV1 systems
MPI-2 C++ Bindings on IRIX systems
MPI Collectives Optimizations on IRIX systems
GSN support infrastructure
Improved Cleanup of Aborted MPI Jobs on IRIX systems

2000 MPT 1.5 MPI-2 one-sided Communication on IRIX systems
MPI-2 I/O Enhancements on IRIX systems
MPI Support for GSN
MPI Enhancements to LSF Support

