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ABSTRACT: 

 

MPI is a portable message passing interface for parallel applications on distrib-
uted memory machines. In this paper we present performance results for the native SGI/Cray
MPI implementation and the portable ANL/MSU MPICH implementation on the Cray T3E.

 

1 Introduction

 

The Message Passing Interface (MPI) provides a portable
programming interface for the development of parallel applica-
tions on MIMD machines with distributed memory. MPI
defines a core of library routines for point-to-point communica-
tion, broadcast, and collective operations (reduction algo-
rithms). It also allows programmers to define their own data
types, groups, contexts, and communicators. MPI includes
useful features from other systems like Chameleon [25], P4
[5][6], PICL [19], PVM [14], Express [35], PARMACS [7],
TCGMSG [26], and Zipcode [29].

The development for MPI began as early as 1992
[1][17][37]. MPI was designed by the Message Passing Inter-
face Forum, a large group of application scientists, program-
mers, and computer vendors representing various organizations
from universities, research laboratories, and industry [16]. A
first proposal for MPI [13] was presented in 1993. The MPI
Forum presented the first MPI standard [30] in 1994 which was
updated for MPI 1.1 [31] in 1995 and MPI 2.0 [32] in 1997.

Overall the MPI Standard 1.1 [31] defines about 125 func-
tions, but the basic set contains only 6 indispensable functions.
The new MPI-2 Standard [32] provides extended functionality
through one-sided communication and parallel MPI-IO.

MPI is available on wide range of platforms from PCs to
Supercomputers. In addition to commercial implementations
provided by computer vendors, public-domain implementations
are available from a number of research centers.

Section 2 gives a short overview of the Cray T3E hardware
and its communication network. Section 3 briefly describes
MPI’s overall functionality. Section 4 presents the implementa-
tions which were used for the performance results shown in

section 5. In section 6 we discuss our measurements with previ-
ously published results [2][3][28].

 

2 Cray T3E

 

The Cray T3E [36] is a scalable distributed memory
massively-parallel programming (MPP) system. It consists of
up to 2,048 processing elements (PEs) connected through a
bidirectional 3D torus. A full configured T3E system has an
aggregated peak performance of 2.4 Tflop/s. 

 

2.1 T3E Processing Nodes

 

Each processing node of the T3E consists of a DEC Alpha
21164 EV5 RISC processor, a system control chip, local
memory of up to 2 GByte, and a network router. The system
logic runs at 75 MHz.

T3E systems have been available with processors running at
300, 450, or 600 MHz. Each processor has two 8 KByte
level-one data and instruction caches and a 96 KByte level-two
cache. For consecutive data transfer from memory to the
processor the cache can be bypassed through 6 stream buffers.
As the DEC Alpha processor can perform on floating-point add
and one floating-point multiply per clock period, a T3E node
has a peak performance of 600, 900, or 1200 Mflop/s resp. 

A block diagram of a T3E processing node is shown in
appendix A.

 

2.2 T3E Communication Network

 

The T3E processor nodes are connected through a 3D torus
interconnect network. The raw bandwidth of the 3D torus is 600
MByte/s per link in each direction with a nominal latency of 1

 

µ

 

s. This gives an overall network bandwidth of 3.6 GByte/s per
node.
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The physical layout of the interconnection network is shown
in appendix B.

 

2.3 T3E Programming Models

 

The Cray T3E supports two distinctive programming models:

• implicit parallel programming (data parallel)

• explicit parallel programming through message passing.

Implicit data parallel programing is supported through
Co-array Fortran (CF90), High-Performance Fortran (PGHPF)
and Cray Adaptable Fortran (HPF_CRAFT) and a global
address space.

Nevertheless, for performance reasons most of the parallel
applications for the Cray T3E are developed through the use of
an explicit parallel message passing library. The Cray Message
Passing Toolkit (MPT) [10][11][12] provides 3 popular message
passing libraries:

• Message Passing Interface (MPI)

• Parallel Virtual Machine (PVM)

• Cray Shared Memory Library (SHMEM).

 

2.4 T3E Configuration at ZIB

 

The performance benchmarks were run on a Cray T3E-900
with 256 application PEs each with 128 MByte local memory.
The PEs were use in dedicated mode which means that a single
application was executed on each PE.

The supercomputer configuration at ZIB which also includes
a Cray J90 parallel vector machine, an SGI Origin 200 file
server, and two STK 4400 ACS tape robot silos is shown in
appendix C.

 

3 MPI

 

The Message Passing Interface (MPI) defines standardized
and portable communication interface library for memory
parallel programming systems. The MPI standard [30] which
was published in 1994 is a leading standard for message-passing
libraries for parallel computers. It defines a core library of
routines for the following mechanisms:

• Point-to-point communication

• Collective operations

• Process groups

• Communication domains

• Process topologies

• Environmental management and inquiry functions

• Profiling interface

• Language bindings for Fortran and C.

The MPI-2 [32] extensions provide even more functionality:

• Dynamic process management

• Input/output

• One-sided communication

• Language binding for C++.

The books [15][20][24][34] provide a comprehensive presen-
tation of MPI’s overall functionality.

 

3.1 Point-to-Point Communication

 

The basic communication mechanism of MPI is the transfer
of data between a pair of processes, one sender and one receiver.
MPI provides a set of send and receive functions that allow the
transfer of data of a specified type with an associated tag. The
message tag allows the receiver to select from different
incoming messages.

Basic MPI send and receive functions are built according to
the following fragments:

 

• send ( address , length , destination , tag )

• recv ( address , maxlen , source , tag , 
actlen )

 

where

•

 

address

 

 defines a memory location containing the data to
be sent or a buffer to receive the data

•

 

length

 

 and 

 

maxlen

 

 define the (maximum) length of the
message in bytes

•

 

source

 

 and 

 

destination

 

 define the process identifier of
the sending or receiving process

•

 

tag

 

 defines an arbitrary message tag (a non-negative 

 

inte-

ger

 

 value)

•

 

actlen

 

 is set to the actual length in bytes of the message
received.

The data typing helps to maintain the correct data representa-
tion even in a heterogeneous environment where different archi-
tectures are linked together. The message tag allows to select
specific messages through their tag by the receiving task.

Different functions are provided for blocking (synchronous)
and non-blocking (immediate) message transfers. A blocking
send blocks the sending process until the buffer containing the
data to be sent can safely be overridden. Similarly, a blocking
receive blocks the receiving process until the data has arrived.
Non-blocking send and receive allow the overlap of the message
transfer with other message transfers or computations.
Non-blocking send and receive consist of two parts: the posting
function, which starts the requested operation; and the
test-for-completion function, which allows the program to deter-
mine whether the requested operation has completed.

In section 5.1 we present the performance results for
blocking, synchronous, and non-blocking point-to-point
communication on the Cray T3E.

 

3.2 Collective Operations

 

Collective operations are provided to transmit data between
all processes in a group or to synchronize processes. MPI
provides the following collective operations:

• Barrier synchronization across all group members

• Broadcast from one member to all members of a group

• Gather data from all group members to one member or all
members of the group (all-gather)
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• Scatter data from one member to all members of a group

• Scatter/gather data from all members to all members of a
group (all-to-all or complete exchange)

• Reduction operations like sum, max, min, or user-defined
functions

The syntax and semantics of MPI collective operations ar
consistent with MPI point-to-point communications. However,
the collective operations are more restrictive.

In section 5.2 we present the performance results for
MPI_Bcast and MPI_Reduce on the Cray T3E.

 

4 Implementations

 

For our performance measurements we investigated the
following MPI implementations for the Cray T3E:

• Cray Message Passing Toolkit (MPT)

• ANL/MSU MPICH

 

4.1 Cray Message Passing Toolkit (MPT)

 

Cray’s implementation of MPI for the Cray T3E is included
in the Cray Message Passing Toolkit (MPT) [10][12]. It was
derived from the Edinburgh Parallel Computing Centre’s imple-
mentation of MPI for the Cray T3D [8][9]. MPT is also available
for the Cray UNICOS and the SGI IRIX operating system.

For our performance measurements we used the Cray
Message Passing Toolkit (MPT) Release 1.3 [10][12].

 

4.2 ANL/MSU MPICH

 

MPICH [17][22][23] is a portable implementation of MPI
developed at Argonne National Laboratory and the Mississippi
State University. MPICH uses an abstract device interface [21],
thus providing portability of the implementation on a large range
of machines. Whereas most MPICH implementations use P4
[5][6] or Nexus [18] as a low level device interface, on the Cray
T3D and the Cray T3E the Cray Shared Memory Access Library
(Shmem) is used for efficiency [4][27].

For our performance measurements we used the MPICH
Release 1.1. The results show that this public-domain implemen-
tation runs very efficiently on the Cray T3E.

 

5 Performance Results

 

5.1 Point-to-point Communication

 

In a first approach we used a simple linear model to calculate
the bandwidth and the latency: , where 

 

t

 

s

 

 

 

denotes

the time to transfer one byte, 

 

N

 

 the number of bytes transferred,

 

t

 

l

 

  the latency, and 

 

T

 

 the total time. But as our test runs showed

that the latency cannot be assumed as constant. Because
different protocols are used for different message sizes, as stated
in [4][8][27], the latency is strongly correlated to the size of a
message transferred. Therefore we present the bandwidth as a
function of the message size. For all investigated functions the
transfer rate reached its maximum at about one megabyte for the
message size.

T tsN tl+=

 

To obtain a lower bound for the latency we measured the time
to transfer a message of zero length. To get more detailed perfor-
mance information for large messages sizes we measured the
transfer time for messages between one and two megabyte in
size. As the latency (and therefore the bandwidth) is nearly
constant for messages of this size, the above stated equation
holds and the latency can be directly obtained from the data by
linear regression.

For point-to-point communications we investigated standard
blocking, synchronous blocking, and standard non-blocking
send/recv functions. For performance evaluation we used a
simple round-trip (ping-pong) algorithm where the data is sent
fourth and back several times for error correction, and the band-
width is calculated from half the round-trip time. As an example
the following C-code fragment shows the implementation for the
timing of the standard blocking send operation:

 

if ( thisPe == masterPe ){

   /* Code for master PE */

   startTime = MPI_Wtime();

   for ( i=0 ; i<transferRepeats ; i++){

       MPI_Send( sendData, msgLen, MPI_BYTE,

                  slavePe, 1, MPI_COMM_WORLD);

       MPI_Recv( recvData, msgLen, MPI_BYTE,

                 slavePe, 1, MPI_COMM_WORLD,

                 &status);

       }

   endTime = MPI_Wtime();

   }

if ( thisPe == slavePe ){

   /* Code for slave PE */

   for ( i=0 ; i<transferRepeats ; i++){

       MPI_Recv( recvData, msgLen, MPI_BYTE,

                 masterPe, 1, MPI_COMM_WORLD,

                 &status);

       MPI_Send( sendData, msgLen, MPI_BYTE,

                   masterPe, 1, 

MPI_COMM_WORLD);

       }

   }

time = (endTime - startTime)/

       transferRepeats/2;

 

5.1.1 Blocking Send and Receive

 

Figure 1 shows the performance for MPI_Send/Recv. The
maximum bandwidth for MPICH was 342 MByte/s. The
minimum latency was 7 

 

µ

 

s and for message sizes larger than one
megabyte was also 7 

 

µ

 

s. Cray MPI only achieved 163 MByte/s
transfer rate. The minimum latency was 8 

 

µ

 

s and for messages
larger than one megabyte 56 

 

µ

 

s.



 

4

 

CUG 1999 Spring 

 

 Proceedings

 

1.0.1 Synchronous Blocking Send and Receive

 

Figure 22 shows the performance for the synchronous
blocking send/receive operation MPI_Ssend/Recv. In synchro-
nous mode MPICH achieved a bandwidth of 334 MByte/s, a
minimum latency of 8 

 

µ

 

s, and for messages larger than one
megabyte 10  

 

µ

 

s. Cray MPI achieved 326 MByte/s bandwidth, a
minimum latency of 29 s and for messages larger than one mega-
byte 126 

 

µ

 

s. 

 

2.0.1 Non-blocking Send and Receive

 

The non-blocking send operation MPI_Isend achieved a
bandwidth of 348 MByte/s for MPICH. The latency reached
from 12 to 28 

 

µ

 

s for zero length messages and was 13 

 

µ

 

s for
messages larger than one megabyte. Cray MPI achieved 167
MByte/s bandwidth, the latency for zero size messages reached
from 24 to 34 

 

µ

 

s, and the latency for messages larger than one
megabyte was 55 

 

µ

 

s (see fig. 3). 

 

Figure 1: MPI_Send bandwidth for MPICH (upper line) and Cray 
MPI (lower line)

Figure 2: MPI_Ssend bandwidth for MPICH (upper line) and 
Cray MPI (lower line)
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3.1 Collective Operations

 

We investigated MPI_Bcast and MPI_Reduce, the latter with
floating point sum as the reduction operation.

 

3.1.1 MPI_Bcast

 

To evaluate the performance of MPI_Bcast we used the
following algorithm: First all processes are synchronized, then
MPI_Wtime is called on the root process to determine the start
time. After this, MPI_Bcast is called several times in a loop for
error correction, and then MPI_Wtime is called on 

 

all

 

 processes,
and finally the maximum of the last timer call of all processes is
taken to determine the overall time. The following C-code frag-
ment shows the actual implementation:

 

MPI_Barrier(MPI_COMM_WORLD);
startTime = MPI_Wtime();
for ( j=0 ; j<TREPEATS ; j++ ){
    MPI_Bcast( data, LEN, MPI_BYTE, root,
               MPI_COMM_WORLD );
    }
endTime = MPI_Wtime();
MPI_Barrier( MPI_COMM_WORLD);
MPI_Reduce( &endTime, &maxEndTime, 1,
            MPI_DOUBLE, MPI_MAX, root,
            MPI_COMM_WORLD );
if ( thisPe == root )
   time[i] = (maxEndTime - startTime)/
                              TREPEATS;
   }

 

For the test runs a message of 1024 bytes was distributed
from a root process to 1, 3, 5, ... 127 processes. Figure 4 shows
that Cray MPI performs and scales much better than MPICH.
For Cray MPI the broadcast to 127 processes took 87 

 

µ

 

s with an
average of 11.2 MByte/s and accumulated 1.4 GByte/s band-
width. With MPICH the same operation took 170 

 

µ

 

s with an

 

Figure 3: MPI_Isend bandwidth for MPICH (upper line) and Cray 
MPI (lower line)
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average of 5.8 MByte/s and accumulated 730 MByte/s band-
width 

 

4.0.1 MPI_Reduce

 

As MPI_Reduce does not return until all values are gathered
on the root process and the reduction operation has finished, the
algorithm for performance measurement simply calls
MPI_Reduce in a loop several times for error correction,
measures the total time, and calculates the time per run.

We used MPI_Reduce to calculate the global sum of 128 real
values (1024 bytes) per process over 2, 4, 6, ... 128 processes.
Figure 5 shows the corresponding times. Cray MPI needs 1214

 

µ

 

s for a reduce operation over 128 processes whereas MPICH
needed 1318 

 

µ

 

s. 

 

6 Discussion of the Results

 

Overall, our measurements for standard blocking
MPI_Send/Recv correspond with the results published in [28].

 

Figure 4: Total time for MPI_Bcast with MPICH (upper line) and 
Cray MPI

Figure 5: Total time for MPI_Reduce with DSUM as reduction 
operation for MPICH (lower line) and Cray MPI
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For synchronous MPI_Ssend/Recv we obtained a slightly better
performance than Berger et al. in [2] and [3].

For MPI_Bcast Cray MPI scales and performs better than
MPICH. One reason may be that in MPICH MPI_Bcast is imple-
mented on top of the point-to-point communication primitives.

For MPI_Reduce MPICH scales and performs better than
Cray MPI. Only if the total number of processes equals a power
of two, the performance of both implementations is nearly the
same. The only exception is for 128 processes where Cray MPI
is faster than MPICH.
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Appendix

A. Block Diagram of a Cray T3E Node

B. Cray T3E Interconnect Network

Source: Cray T3E Interprocessor Network in [33]
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C. Supercomputer Configuration at ZIB
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