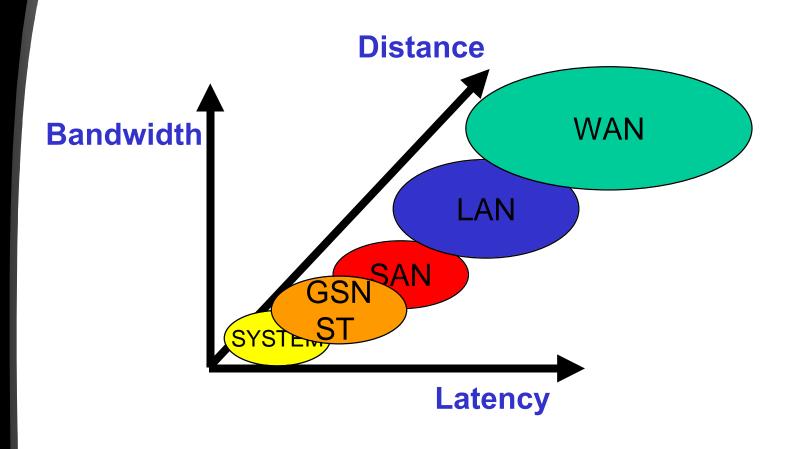


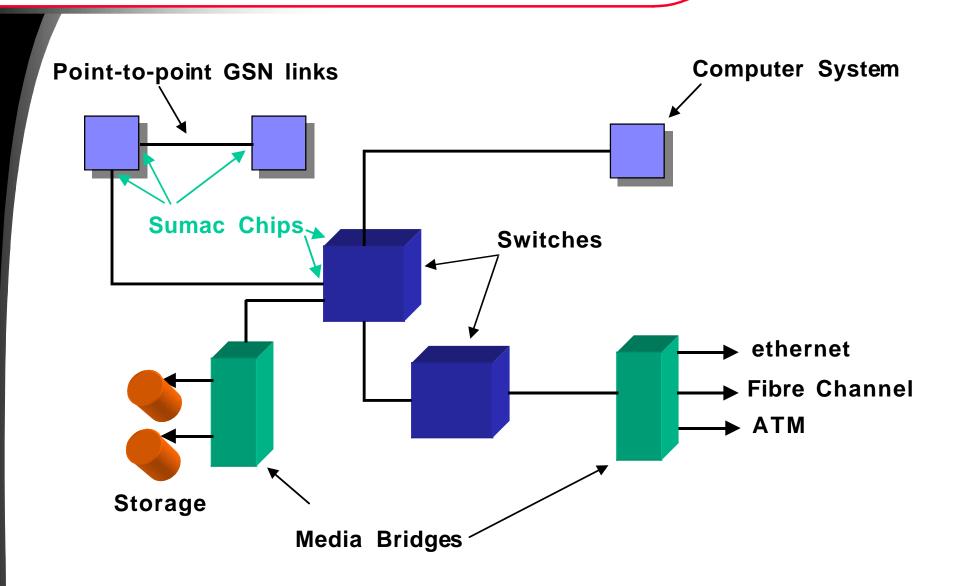
Building High Performance Server Network Interfaces


Joe Gervais

Product Line Manager

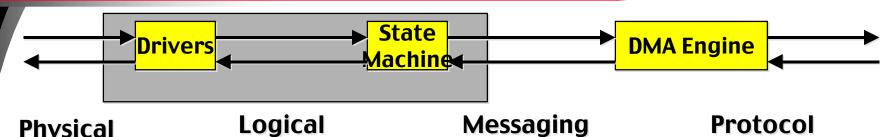
High Performance Networking

Interconnect Hierarchy



Gigabyte System Network™, or GSN™

- Is the highest bandwidth and lowest latency interconnect standard
- Provides full duplex dual, 6400 megabit (800 megabyte) per second of error-free, flow controlled data
- Provides for interoperability with Ethernet, Fibre Channel, ATM, HIPPI-800 and other standards


GSN Topology

SuMAC vlsi chip

Physical

10 Gbit/s

- 6.4 data
- 1.6 control
- 2.0 encoding

Copper

- 40 meters
- 20 bits wide @500MHz

Fiber

- 1 Km
- 10 Bits wide @1GHz

32 Byte cells

Multiplexed

4 VCs

Error Control

- **Link CRC**
- **End to End CRC**
- Go back N retry

Flow Control

credits for each VC

Data Buffers

on chip

IEEE 802 MAC Header Any IEEE defined ULP

- expanded length field
- TCP/IP
- Schedule Transfer

The technology is ideal wherever organizations require timely movement of large amounts of information including

- scientific and technical computing
- HDTV
- data mining
- transaction processing
- video and film archiving
- storage management

Full bandwidth, high performance adapter

Performance (Beta Software)

- Raw GSN 796 MB/s, 791 MB/s bidirectional
- ST 560 MB/s, 769 MB/s memory striping
 - Uses 5-8% of one CPU
- TCP 280 MB/s, UDP 500 MB/s
- BDS/ST 450 MB/s, 690 MB/s mem. striping
- One-way latency 4-9 usec (mem-to-mem)
 - 4 6 usec pt pt 5m cable
 - 6 9 usec **50m cable plus switch**
- Packet transmit rate 1.45 million PPS
- ST scaling: aggregate bandwidth scales at 98% of linear from 1-3 NICs

... Stay Tuned

Powered on August 1998

Interoperated with Essential Switch September 1998

To be offered in single and dual XIO versions

To be offered on Origin 200 GigaChannel, Origin 2000 and Onyx2

- Design has very efficient CPU utilization
- Memory a different story

Origin 200 GigaChannel, Onyx2 Deskside

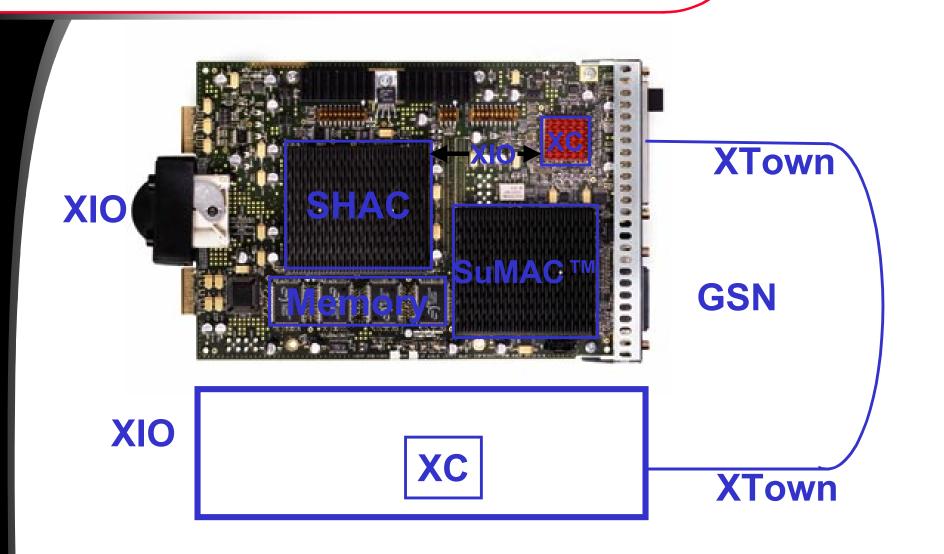
Expected to not exceed 400 MB/s total

Origin 2000 Deskside, Onyx2 Rack (8P)

Expected to not exceed 500 MB/s, FDX

Origin 2000

 12 CPU and larger should be able to achieve full bandwidth for proper apps



Bandwidth requirements are very memory intensive

- Node Boards tested to 504 MB/s memory bandwidth to GSN boards
- 6 node boards for full bandwidth
- Most applications will only be able to take advantage of ~
 500 MB/s performance

Adapter Architecture

Bus Choices

- 64 Bit / 33 MHz PCI ~250 MB/s Total
- 64 Bit / 66 MHz PCI ~500 MB/s Total
- SGI Dual XIO GSN Adapter hardware tested to 99% of line rate
 - 791 MB/s per direction
 - Software overhead will reduce actual performance

Latency

- HIPPI hardware latency with XIO adapter on the order of 80-90 u sec
 - MPI adds ~ 30 u sec
- GSN hardware latency expected to be on the order of 6 u sec or lower through a switch
 - MPI may be as low as 30 u sec total for a 4x decrease

SGI SHAC ASIC

- DMA Engines per VC
- ST Data Transfer Engine
- TCP Checksum support
- Supports Multiple Interrupt Queues
 - true parallel driver architecture not just multi-threaded