
Strategies & Obstacles inStrategies & Obstacles in
Converting a Large ProductionConverting a Large Production
Application to FORTRAN 90Application to FORTRAN 90

David J. Gigrich
May 19, 1999

Structural Analysis Computing
The Boeing Company

david.j.gigrich@boeing.com



2

Topics of DiscussionTopics of Discussion

� Intro. - Rationale for converting to FORTRAN 90

� Advantages

� Migration strategies

� Debugging techniques

� Obstacles / examples / clean-up

� Tools used

� System verification

� Resources & conclusions



3

Rationale for Converting to f90Rationale for Converting to f90

� Poor performance of PV+ CPUs

� CMOS technology - Gigaflop performance

� Phaseout of T90s and support for them

� Availability of spares - reliability

� Vendor limited support of FORTRAN 77



4

Advanatage of FORTRAN 90Advanatage of FORTRAN 90

� FORTRAN 90 is vendor standard

� Upward compatible libraries & object files

� Dynamic memory allocation

� Array operations (syntax)

� More intrinsic procedures

� Derived data types



5

Advantages Advantages (continued)(continued)

� Performance improvements
� Improved vectorization

�Unrolling of loops

�More in-lining of code

� Software can be simplified

� Reduced maintenance cost

� Improved portability



6

Migration StrategiesMigration Strategies

� Talk with other sites already using f90

� Convert small-modern applications first

� Verify external f90 libraries

� Use FORTRAN 90 compiler to locate
noncompliances
� Triton

�Workstations (IBM RS6000, HPs)



7

Migration Strategies Migration Strategies (continued)(continued)

� Subdivide large applications
� Support libraries

� Selective loading/testing

� Precompilers

� Preprocessors, processors, postprocessors

�Utilities (e.g. third party interfaces)

� Set number of CPUs 1



8

Stiffness

Stress

Weights

Aerodynamics

Design

FlutterGeometry

Loads

Vibration

ATLAS
An Integrated Structural Analysis and Design System

(1.4 Million Lines of Code)



9

Debugging TechniquesDebugging Techniques

� Address one problem at a time

� Interactive debugger (Totalview) for aborts

� Try to duplicate problem on cft77 system
� Successful

� Our code changed or

� System libraries changed

� Isolate the f90 routine
�Mix of f90 and cft77 objects



10

Debugging Techniques Debugging Techniques (cont.)(cont.)

� Restrict or eliminate optimization

� Check incoming & outgoing arguments

� Split routine in question into several
�Mix of f90 and cft77 objects

� Use Totalview
�  Step through f90 version

�Compare with f77 version



11

Obstacles Encountered (Examples)Obstacles Encountered (Examples)

dimension a(10,3), b(9), c(10,9)
.

call vecadd (a ,10 ,b ,3)
.
.

call vecadd (c, 10, b, 6)
-------------------------------------------------------
subroutine vecadd (x, nrow, b, num)
dimension x (nrow,3), b (num)
do i=1, num
   x (nrow, i) = x (nrow, i) + b (i)
enddo
return



12

Examples (optimization problems)Examples (optimization problems)

dimension a(1) <>  a(*) <>� a(n)

dimension b(n,1) <>  b(n,*) <>� b(n,m)

dimension c(n,3) <>  c(n,*) <>� c(n,m)

dimension d(1) <>  d(n*m) <>� d(n,m)

dimension e(n,m,1) <>� e( n,m,*) <> e(n,m,k)



13

Examples (optimization continued)Examples (optimization continued)

dimension ifile(1)
equivalence( ifile, arnf)
common / kqrndm / arnf, brnf, ... , zrnf

do i = 1, n      <> call dropfil (arnf, n)
   close (ifile (i) ) where:
enddo subroutine dropfil(ifiles,n)

dimension ifiles (n)
do i=1, n
   close ( ifiles (i) )
enddo



14

Examples (optimization continued)Examples (optimization continued)

dimension a (n,m), b (n*m)

do i= 1, n*m
   a ( i ,1) = b(i) | unpredictable results
enddo

do j =1 , m do j=1,m
   do i = 1, n    <>    a(:,j) = b((j-1)*n+1:)
       a ( i, j ) = b ( i + (j-1)*n ) enddo
   enddo
enddo



15

More Obstacles EncounteredMore Obstacles Encountered

� Loop error for variables with L - format
(e.g. 3Labc ... 32 bit loop register)

� keybig = -mask(1) <>  JMHCON(3)

� Missing routine arguments

� call writms ( ntp8, nsizeb, 240, 3)

�call writms ( ntp8, nsizeb, 240, 3, irr)

�call writms ( ntp8, nsizeb, 240, 3, -1, 0)



16

Obstacles Encountered (compiler)Obstacles Encountered (compiler)

� Formats

� 3x5e16.8  <> 3x, 5e16.8

� Dimension na (nxt, 5)
� int =  na ( nxt )  <> int = na ( nxt, 1)

� Round-off differences

� Different variable memory locations

� Common block ordering



17

Examples (Mixed Arrays)Examples (Mixed Arrays)

cft77 equivalence (cntrl(1), icntrl(1))
rval = icntrl (5) .or. 0
rval = rmove ( icntrl(5) )
rval = cntrl (5)
ival = rval

f90 rval = transfer ( icntrl(5), rval)
ival = rval

f90 ival = transfer ( icntrl(5), rval)



18

Examples (clean - up)Examples (clean - up)

� General format clean-up
�O22  <> I9

� nL  <> nH

� Change pointers to allocatable arrays

� Replace loops or routine calls with f90
syntax where practical

� Automatic array allocations



19

Tools Used / DevelopedTools Used / Developed

� Internal program to process SCCS files
� ( 1 ), ( x, 1 )

� dimension, real, integer, complex

� grep (0L, 1L, 2L, ... 9L)

� f90 Compilers ( Triton and RS6000)

� SCCS

� Cflist & Totalview



20

Regression TestingRegression Testing

� Component testing
� Libraries (system, data center, internal)

� Preprocessors, postprocessing, processors

� 256 validation cases out of 443

� Continuious developer and user testing
(over 11 months)

� Block point release validation (190 cases)



21

ResourcesResources

� Flow time:  March 1998 to February 1999

� Labor - Hours:
� 370 Analyst

� 95 Engineering

� 2302 routines of 6423 modified

� Triton T916 with 512 MW

� Minimal machine resource impact



22

ConclusionsConclusions

� Not tested . . . It won’t work !

� Sucessful conversion
�Code executes more efficiently

�Discovered many underlying array size errors

� Applications are now more portable

�Cost reductions
� Maintance (do more with f90 and easier)

� Development


