
1

EXPERIENCES WITH PORTING
THE PARALLEL CFD CODE N3S TO FORTRAN 90

J.P. GREGOIRE

D.E.R. Electricité de France

Département MMN

1, avenue du Général de Gaulle

92141 CLAMART CEDEX-France

jean-pierre.gregoire@edf.fr

Abstract

We first present the difficulties we have overcome using the CF90 parallelizer-compiler to obtain a parallel

version of the N3S code which is similar to that obtained using the CF77 parallelizer-compiler. We also

discuss about the stability of the results produced after this porting. We finally describe the difficulties

encountered in controlling the memory consumption when moving from the Fortran 77 static memory

allocation to the Fortran 90 dynamic memory allocation.

Introduction

N3S is a finite-element computation code that solves the non-stationary Navier-Stokes equations for

incompressible turbulent thermal fluids. The bulk of the computation takes place in a time-marching on-loop

until the stationary state of the flow will be reached.

The Electricité de France Research Division (EDF/DER) started the development work on N3S in 1982. Since

then, the program processing capacity has grown to the point where it today handles large complex meshes

containing one million nodes.

Using the Fortran 77 compiler the code has already undergone advanced vectorization and low level

parallelization producing a speedup of 3 in production mode.

Compared to the initial version of N3S (running on a CRAY 1), the recent one (running on a CRAY 98)

presents a speedup of 5874 as detailed in table 1.

To prepare the next replacement of the C98 we have ported the code to Fortran 90. This paper presents the

difficulties we have encountered during this porting.

1- Compiling with CF90

1-1 Sequential compiling

Among the numerous options of the CF90 compiler, in order to preserve the results we prefer to change the

general -Oopt option by the following specific ones :

2

-Otask0 sequential compiling

-Oscalar1 low scalar optimisation, results can differ from the results obtained

when -Oscalar0 is specified, but needed by -Ozeroinc used to force

 each do loop, in N3S, to be executed at least one time

-Ovector1 only inner loops are vectorized, not all vector reductions are performed

Using these options the CF90 compiler generates some diagnostics due to the fact that it is less permissive than

CF77 one.

For example, the double test :

if(iter.gt.1.and.rrp.ne.0.) gama=rrx/rrp

requires that rrp must be initialised even if iter=1.

After these easy modifications, we ran the code, on a turbulent test case containing 100 ,000 mesh points, and

observed, at the first time step, a relative difference of 10-13 on the results compared to those computed with

the CF77 version of the code. Unfortunately this difference is increasing as the time steps are marching on (this

subject is developed latter).

1-2 Parallel compiling

As the code was previously parallelized using !MIC$ directives, we moved from sequential compiling to

parallel one, by only changing, in the compiler options, -Otask0 by -Otask1, so !MIC$ directives are

recognised and no autotasking is performed .

We don’t use -Otask2 to avoid loop nest restructuring.

We submitted the parallelized (by CF77 directives) code to the CF90 compiler. The only diagnostics generated

were warning ones of the form :

the shared variable ... « may need a guard »

These diagnostics, absent using CF77, must be analysed carefully because a guard directive inhibits

vectorization and slows down parallelization.

For instance in the parallel algorithm of matrix-vector product Y=A*X, where the permuted matrix A is

decomposed in NBLOCK blocks and each block is stored using the jagged-diagonal format :

CMIC$ DO ALL SHARED (...), PRIVATE (...)

DO 1000 IBLOC = 1,NBLOCK

C W = 0. on the block IBLOCK

IFIN= LONPAR (1, IBLOCK)

DO I = 1, IFIN

V W(I) = 0.

END DO

3

C W = A * X on the block IBLOCK

NDIAGX = NFRPAR (IBLOCK)

DO JDIAG = 1, NDIAGX

IDECAL = IDEBPAR (JDIAG, IBLOCK) - 1

S IFIN = LONPAR (JDIAG, IBLOCK)

Parallel DO I = 1, IFIN

V W(I) = W(I) + COEF (IDECAL + I) * X (ICOL (IDECAL + I)

END DO

END DO

C Y = permuted W on the block IBLOCK

IDEB= IDEBPAR (1, IBLOCK)

C DIR$ IVDEP

DO 10 I = 1, IFIN

V Y (IPERM(IDEB + I)) = W(I)

 10 CONTINUE

 1000 CONTINUE

If , as proposed by the compiler, we modify the DO 10 loop by including guard directives :

CMIC$ guard

DO 10 I = 1, IFIN

Y (IPERM(IDEB + I)) = W(I)

10 CONTINUE

CMIC$ end guard

inside each processor, the vector register containing W(I) must go through the guard control process of Y

before to be stored. Consequently parallelism is stopped and the vectorization of the DO 10 loop is slowed

down.

The diagnostic of the compiler is correct : on each matrix block the DO 10 loop does not contain any vector

dependency but between 2 blocks vector dependencies can occur.

However, we know that in our code no vector dependency occurs and, to preserve computation speed, we

neglected this diagnostic.

2- Stability of the results with CF90

Preliminary remark

The N3S code is delivered under quality control based on a set of reference results. Porting the code to Fortran

90, our goal is to obtain results as close as possible to the reference ones.

4

The parallel version of N3S needs to specify in the source the value of NBLOCKS. As the code is runned in

production mode, the number of available processors is varying at each time, so NBLOCKS must be near a

multiple of 8 on a C98 : we chose NBLOCKS=24.

In order to validate the parallel version, we have to verify the stability of the results between the 3 following

different runs :

N3S source

sequential executable parallel executable

sequential executable parallel executable parallel executable

NBLOCKS=1 NBLOCKS=1 NBLOCKS=24

run NCPUS=1 run NCPUS=1 run NCPUS=8

2-1 Stability of the results of the parallel version

Whatever the number of processors used and NBLOCKS specified we verified that the binary results are

identical. This fact proves the well working of CF90 parallelizer.

2-2 Difficulties to obtain the stability of the results when passing from the sequential CF90 to the parallel

CF90 compiler

Using the sequential or the parallel CF77 compiler and avoiding the parallelization of dot products we obtained

that the binary results were always identical. We tried to obtain the same conclusion using the CF90 compiler.

Unfortunately the results were different.

The localisation of the sources of these differences was difficult because the CF90 compiler does not create the

modified-parallel code source.m containing the !MIC$ directives. We can only refer to the compiling listing

which is sometimes ambiguous in describing where are the parallel regions handled by the compiler.

So we used numerical printings and measured a relative difference of 10-9 on the matrix coefficients after the

first matrix assembling.

5

This important difference indicates that the sequential and the parallel computations of these coefficients were

not identical.

We discovered that the matrix assembling of M_GLOB, achieved by the following DO 21 loop, was

parallelized while -0task1 CF90 option was specified (only user tasking) :

 SUBROUTINE K3DI33

CMIC$ DO ALL SHARED (...), PRIVATE (...)

DO IEL = 1,NELEM

 computation of elementary matrix M_ELE(IEL,35)

ENDDO

C assembling of M_GLOB

DO 21 K=1,35

CDIR$ IVDEP

DO 20 IEL=1,NELEM

KK=I_ADD(IEL,K)

M_GLOB(KK)=M_GLOB(KK)+M_ELE(IEL,K)

 20 CONTINUE

 21 CONTINUE

To prove this parallelization we generated the assembly code using -eS option of CF90, and on this later we

found the parallel regions, implemented by subroutines, by searching the string of characters : ‘’IDENT _tsk_

K3DI33_..’’

We found 2 parallel regions proving that the assembling of M_GLOB was parallelized.

This parallelization is not correct because I_ADD(IEL,K) does not contain dependencies for a fixed K (as

indicated by CDIR$ IVDEP) but certainly contains many dependencies between 2 different K, so parallelism

cannot be implemented on K DO loop.

We forced the non-parallelization by including the 2 directives CDIR$ NOTASK and CDIR$ TASK.

After this modification, we measured a relative difference of 10-15 on the coefficients of the elementary

matrices M_ELE(NELEM,35).

This low difference indicates that CF90 compiles differently a pure vector loop in sequential mode compared to

parallel mode.

To avoid this compiling difference we replaced the DO IEL loop by a calling sequence to a subroutine

containing the original loop but computing only n*128 elementary matrices.

 Using this trick we verified that the binary results were identical when passing from the sequential to the

parallel CF90 compiler.

6

In consequence the sequential version of the code was left and replaced by the parallel version with

NBLOCKS=1. So we have to maintain only one version of N3S code.

3- Instability of the results when passing from CF77 to CF90, instability of the code

In order to validate the CF90 version of N3S code we compared, on unitary test cases, the results obtained with

this version to those obtained with the official CF77 version.

We discovered a relative difference on each variable, used in the flow modelisation, increasing as the time is

marching on :

time=1 time=2 time=50 time=100

rela.diff. on velocities 3.10-12 8.10-10 2.10-3 4.10-3

rela.diff. on pressure 3.10-12 2.10-9 2.10-3 8.10-3

rela.diff. on K 10-15 5.10-12 3.10-2 5.10-2

rela.diff. on e 10-15 8.10-12 2.10-2 3.10-2

Despite our efforts we could not reduce this difference. N3S code is not enough robust to resist when the order

of the floating point operations is changed.

This fact is due the method used to solve the Navier-Stokes equations by splitting these ones in 2 fractional

steps : the non linear convection step, in which each variable is transported by the velocity of the previous time

step, and the Stokes step solved by implicit solver. A slight difference on the velocity has a large effect in the

convection step.

We are correcting this problem by implicitly solving together the convection and the Stokes steps.

4- Computational speed comparison when passing from CF77 to CF90

Using the hardware performance monitor, the hpm command reports the machine performance during the

sequential or the parallel executions of the code, always in production mode in our case.

From this report we extracted the following table :

7

par. CF77 1cpu par. CF77 8cpu seq. CF90 par. CF90 1cpu par. CF90 8cpu

floating ops 45.84G 45.82G 46.34G 46.73G 46.73G

V floating ops 35.65G 35.65G 36.89G 36.90G 36.90G

mem references 78.38G 78.42G 77.76G 80.75G 82.84G

avg. conflit/ref. 0.69cp 0.93cp 0.61cp 0.60cp 0.69cp

V length 104.79 104.76 111.84 111.40 111.54

MFLOPS 57.88 55.64 64.58 61.52 57.08

sys. cpu time 52.34s 53.86s 50.35s 46.91s 50.21s

user cpu time 794.41s 825.35s 719.76s 761.84s 820.42s

connec. time / 293.69s / / 292.18s

concur avg. / 2.81 / / 2.81

price 479.83F 197.01F 436.40F 458.30F 194.03F

(in order to favour parallelism the price in parallel execution is the user cpu time price/concur avg.)

Comments

1- the computational performances are slightly greater with CF90 in sequential and in parallel

mode,

2- the resulting parallel speedups (concurrent average of 2.81) are identical,

3- CF77 generates less floating operations and less memory references,

4- but CF90 vectorizes better and produces some MFLOPS more,

5- in the 2 cases, the implementation of the parallelism is attractive, slight increase of the user cpu

time compared to a parallel speedup of 2.81 which drops the computational price by the same

factor according to our tarification policy.

5- Difficulties encountered in controlling the memory consumption in CF90

In the previous version the memory allocation was static : 2 large vectors (an integer and a real one) was

defined before the compilation in order to contain all the arrays in the code.

Now these 2 vectors are dynamicaly allocated and deallocated twice : at the first time a small allocation for the

data input and then, with the correct size, a large allocation for the calculation.

We also transformed the data input using the object-oriented programming, available in CF90, which contains

dynamic memory allocation.

After these 2 changes we discovered that the memory consumption was increased by a factor of 50%.

We traced the memory allocation, without recompilation, by adding the ‘’malloc’’ library at the link and

submiting the run with ‘’MEMTRON=1 ; export MEMTRON’’.

8

It appeared that the objects are mixed with specific zones generated by internal reads (converting characters to

integer or real). These zones are not freed by the system and that pollutes the memory.

For instance, suppose that the memory is of the form :

The following internal WRITE :
WRITE(LIGNE,’(I8)’)I

implies the allocation by the system of the W zone to copy LIGNE :

If then the program allocates Z2 :

and deallocates Z1 et Z2 to collect the memory, we obtain :

The system does not deallocate the W zone, in order to reuse it later, so the free zone is segmented in 2 parts.
As the program will allocate now a large array, the first free zone is wasted.
A solution to this problem may be to change our array management on 2 large vectors to a dynamic allocation
of each array in order to reuse the small free zones.

Conclusion

We have encountered difficulties in porting the parallel N3S code from CF77 to CF90 mainly because pure

ascendant compatibility is not maintained between these 2 compilers. Another reason is that CF90 does not

generate the modified-parallel code ‘’source.m’’ containing the parallel diectives.

These difficulties were overcame and we have now a new ‘’source.m’’ which may be easily compiled without

automatic parallelization on any platform.

Computational performances of the code generated by the 2 compilers are similar with a slight advantage to

CF90.

By modifying some parallel routines, the results using CF90 are identical in sequential or parallel mode.

We could not reproduice this stability of the results when porting the code from CF70 to CF90. This problem

is due to the numerical sensitivity of the convection solver.

In the next future this problem will be corrected by using a more robust Navier-Stokes solver.

Z1allocated W Z2 free

Z1allocated W free

freeallocated W

Z1 freeallocated

free

9

References

[1] J.P. GREGOIRE, B. NITROSSO, G. POT.

‘’Conjugate gradient performances enhanced in the C.F.D. code N3S by using a better vectorization of matrix

vector product’’, IMAC'S 91, Dublin, July 1991.

[2] J.P. GREGOIRE, G. POT.

‘’Speed-up of CFD codes using analytical FE calculations’’, 14 th. Int. Conference on Numerical Methods for

Fluids Dynamics’’, Bangalore, India, July 1994.
 [3] J.P. GREGOIRE, B. NITROSSO, Y. SOUFFEZ, G. ROTH.

‘’Speedup ol parallelized N3S code on CRAY C98 in production mode’’, IX International Conference on

FINITE ELEMENTS IN FLUIDS, Venezia, October 1995.

[4] J.P. GREGOIRE, J.D. MATTEI, G. SIMEONI .

‘’Parallelization of ESTET code on CRAY C98’’, HPCN 97, Vienna, April 997.

[5] J.P. GREGOIRE, B. THOMAS.

‘’Speed-up comparison between FE and FD parallel CFD codes on C98’’, CUG97, San Jose, June 1997.

algori. evolution code optimization

(speedup S)

accum.

speedup

computer

1979 N3S code S=1 CRAY 1 (1Mw)

1983 tetrahedron FE

advection 1-order

UZAWA algori.

mat. assembling

CG solver

 (S=3) S=3

1985 CG optimization (S=e)

mat. reformation (S=8) S=24

S=96

CRAY XMP 2(4Mw)

(hardware gath-scat)

(S=4)

1987 gene. UZAWA alg .

1989 CRAY France price CG vectorization (S=4) S=384 CRAY YMP 4(64Mw)

1990 advection 2-order projected CG

1992 variable density analy. FE calcula.(S=3) S=1152 CRAY YMP 4(128Mw)

1994

S=1958

CRAY C90 8(256Mw)

(S=1.7)

1995 parallelization batch mode

(S=3) S=5874 CRAY C90 8(512Mw)

1998 FORTRAN 90 (S= e) S=5874

EVOLUTION AND OPTIMIZATION OF N3S CODE

