The SGI Multi-Stream Processor (MSP)

Terry Greyzck
Technical Lead, MSP Compiler

28-May-99
Copyright © 1999, SGI
We know parallel

• Multi-level parallelism experts for 25 years
 – Multiple, pipelined functional units (scheduling)
 – Automatic vectorization
 • Very low overhead
 • Chained, pipelined operations
 • Asynchronous loads and stores
 • High percentage of peak performance
 – Autotasking/OpenMP
 • Higher overhead
 • Both automatic and directive-based
 • Designed for maximal use of expensive processors in a time-sharing environment
Multi-Stream Processing

- Multi-Stream Processing
 - True parallel execution
 - Allows optimal use of memory bandwidth
 - Synergistic union of hardware and software
 - Shared registers and cache control on the Cray SV1
 - The Cray SV2 is a dedicated MSP machine with fully integrated hardware support
 - Multi-Streamed jobs are scheduled by the operating system
 - Codes that vectorize well generally stream well, using breakthrough compiler technology
 - Fills the cost/effort gap between vectorization and OpenMP
Minimum Effort, Maximum Gain

- Manual parallelization methods require substantially more user effort than automatic vectorization or streaming
- Vectorization requires relatively little user intervention
- Multi-Streaming is designed to be a logical bridge between vectorization and OpenMP
What’s *this* thing?

It’s an abstract representation of an MSP

- An SV1 board contains four SSPs
- An MSP is ideally configured by choosing one SSP from each of four boards
- The rod running through the SSPs represents a single SV1 MSP
- If you can find it on the web, it *spins*!
- The SV2 MSP configuration is very different, but I haven’t created its graphic yet…
- *(yes, it will spin as well)*
Very simple example… (Reference only)

DO I = 1,1000
 A(I) = B(I) + C(I)
ENDDO

• Only one version of the code exists; all SSPs execute the same loop
• Each SSP determines its own loop iteration range, based on its SSP number
• There is no ‘master’ or ‘slave’ concept; each SSP is fully independent and is capable of executing any segment of code

DO I = 1,250 SSP 0
 A(I) = B(I) + C(I)
ENDDO

DO I = 251,500 SSP 1
 A(I) = B(I) + C(I)
ENDDO

DO I = 501,750 SSP 2
 A(I) = B(I) + C(I)
ENDDO

DO I = 751,1000 SSP 3
 A(I) = B(I) + C(I)
ENDDO
End of the Term

MSP \((n)\) Multi-Stream Processor

SSP \((n)\) Single-Stream Processor

Stream \((n,v)\) When used as a verb, to use multiple SSPs of an MSP

Streamed \((n,v,adj,…)\) Can be used interchangeably with multi-streaming (English majors, we’re not)
Operating System Support

• Currently available on the Cray SV1
 – Up to six configurable MSPs on a 32 processor system
 – Each MSP is configured to maximize its access to memory bandwidth
 – All SSPs comprising an MSP are considered a unit, greatly lowering intra-MSP communication costs

• And on the Cray SV2
 – Consists entirely of Multi-Stream Processors
 – Treats an MSP like a single CPU
MSP Program Support

• F90 support available on the SV1
 – Available with PE release 3.3 in late July
 – Primary option is `-Ostream[0-3]
 – `-Ostream2 currently provides automatic streaming of loop nests, including reductions and last value captures
 – SV1 default is `stream0`, SV2 default is `stream2`

• C and C++ option is `-hstream[0-3]
 – Available with PE release 3.4
Program Support - continued

• MSP Programming Environment reliability
 – Rigorous functional testing suite with full automatic streaming enabled
 • Over 20,000 MSP tests covering more than 8,600,000 lines of Fortran code
 • Developmental compiler has a passing rate of 99.78%, and is improving...
 • New tests being added regularly

 – Extensive performance testing and analysis
 • Of both benchmarks and actual production codes
 • Results help to channel development efforts, allowing us to focus our resources where they will do the most good
MSP Hardware Support

• Cray SV1 MSP hardware support includes
 – Shared primary memory
 – Intra-MSP cache coherency control
 – Shared B and T registers

• Cray SV2 MSP hardware support includes
 – Shared primary memory
 – Intra-MSP cache coherency
 – Extremely fast hardware synchronization mechanism
Streaming and Vectorization

- Multi-streaming acts hand-in-hand with vectorization to achieve the greatest speed up
 - Loops can both stream and vectorize
 - Streaming, in conjunction with various loop restructuring techniques, reduces memory traffic by reusing vector results
 - Multi-streaming, in the simplest case, behaves as a pipe multiplier for vectors, effectively giving the SV1 an eight pipe, 256-element vector unit per MSP
Streaming and… everything else

If it works with **OpenMP**…

It will work with multi-streaming.
What Multi-Streams?

(Reference only)

• Inner loops, outer loops, middle loops… loops!
 – Strided loads and stores
 – Reduction operations, with consistent results
 – Conditional execution
 – Last value captures
 – Loops that require array privatization
 – Gathers and unordered scatters (*ordered coming soon*)
 – Pack/unpack operations (*coming soon*)
 – Bit matrix manipulations (*coming soon*)
 – Many other constructs available now, with more planned
SV1 MSP Performance

• Experiences to date
 – Codes that run well on long-vector, wide pipe machines perform very nicely using the MSP
 – The ability to multi-stream outer loops that are otherwise non-vectorizable can result in a large performance gain
 – MSP performance on the SV1 can exceed a factor of four improvement for limited cases, due to a larger apparent cache
 – The primary limiting factor on the SV1 is that intra-MSP data synchronization requires a full cache invalidation
SV1 MSP Timings

MSP Performance Suite
Execution Times in Processor Seconds
Measured 14May99

- SV1 results using a current F90 compiler with -Ostream2
- T90 results obtained using the same version of F90 with default options
- Both tests run with NCPUS = 1 (single processor execution) and no code modifications
Results normalized with respect to the T90; ratios indicate the percentage a SV1 MSP code exceeded the speed of the T90.

The range between -20% and 20% (-0.2 to 0.2) is considered to be T90 equivalent.

This comprises the MSP Performance Suite, default options at compilation except -Ostream2 for the SV1.

All tests run with NCPUS set to 1.

Y-axis is $\frac{T90 - SV1MSP}{T90}$.
SV1 MSP Performance Continued

• Lessons we have learned
 – The proper selection of loop nest optimizations is crucial for obtaining maximum performance
 – Reducing the amount of data synchronization is often necessary for achieving peak performance
 – Aggressive removal of overly conservative cache invalidations is essential on the Cray SV1
 – Some manual intervention may be required until compiler technology for automatic multi-streaming is fully developed
Future Directions

- Additional directives and assertions for obtaining the highest possible performance
- Improved loop restructuring
- Improved cache utilization
- Multi-streaming of a wider range of constructs
- Further reduction of synchronization overhead
- Asymmetrical multi-streaming
- Multi-streaming of code outside of loops
- Closer interaction with inlining
And the winner is...

- The multi-stream processor was designed for you, the customer
- A guiding design goal is ease of use and minimizing the necessity for hand-tuning
- At the same time, allowing low level manipulation for the seriously geeky (*that includes most of the development team, I’m afraid*)
- It’s fun! My boss told me so.
- Remember, as a company we’ve got 25 years of design experience behind us
- The winner is… you, the customer, and *us*, here at SGI.