
IRIX Resource Management Plans & Status
Dan Higgins

Engineering Manager, Resource Management Team, SGI

E-mail: djh@sgi.com

CUG Minneapolis, May 1999

Abstract

This paper will detail what work has been done and the schedule for completing, testing and
delivering the remaining work in the areas of IRIX Job Limits, IRIX Comprehensive System
Accounting, IRIX Scheduling and Workload Management.

Ê

Introduction
There has been much effort focused on improving the Resource Management capabilities in
IRIX over the last year. We are adding the concept of a "job" its associated limits, similar to the
UNICOS job concept and limits, into IRIX. The functionality our UNICOS Cray System
Accounting users are used to is being added to IRIX and will be called IRIX Comprehensive
System Accounting (CSA). We have made improvements in IRIX job repeatability in IRIX 6.5.4
and Miser. We introduced the Load Sharing Facility from Platform Computing as our workload
management solution. The need for custom scheduling policies is being addressed with our new
eXtensible Resource Scheduler Product.

IRIX Job Limits
Overview
UNICOS systems have long allowed system administrators to control machine access on a per-
user basis using job limits and the UNICOS User Data Base. IRIX system administrators have
requested similar functionality. The IRIX Kernel Job Limits project will provide the ability to
define job limits and control user processes in a manner that's similar to what's done on
UNICOS.

IRIX currently supports resource limits for individual processes. The "getrlimit" and "setrlimit"
library routines are the user interface to process limits. While limits on individual processes are
useful, they don't provide all the tools that system administrators need to control the workload on
a machine. A login session or batch submission can spawn multiple processes and a mechanism
is needed that controls the resource used by all these processes as an aggregate. The UNICOS

job concept is such a mechanism. A new job is created for each login session or batch
submission and all processes that are created as a result belong to the job. The job becomes the
container used to limit resources.

For IRIX, when we talk about the job limits work we are doing, it is best to break it the
discussion into three parts; the definition of an IRIX job, Limit Domains, and the specific limits
we are going to support.

IRIX Job Concept
An IRIX job is a collection of processes. In particular, it is the collection of all processes that
stem from a single point of entry to a machine. As is illustrated in figure 1 below, a point of entry
may be an interactive login, a submission from a workload management product like LSF, a cron
job, or a remote access via rsh, rcp, ftp, or array services. All processes that are descendants of
the original point of entry process are part of the job. A job may contain multiple process groups,
sessions, or array sessions but processes in one of these sub-groups are always contained within a
single job. Each new process in a job inherits its jobid and limits from its parent and the "job
container" is not escapable by non-privileged users. This allows us to implement further IRIX
features so that all processes associated with a particular job can be limited, queried, controlled,
scheduled and accounted for as a group in a manner similar to UNICOS jobs.

Figure 1 - Entry points

Limit Domains
Limit domains are a way of grouping related limits together. The UNICOS UDB provided two
fixed limit domains - interactive and batch. With IRIX job limits, we have the same ability to
define interactive and batch limits on a per-user basis as we could on UNICOS.

In addition on IRIX, limit domains are extendable and we have the ability for administrators or
workload management products to define their own custom limits within their own limit
domains. The SGI provided commands that allow interactive access (login, telnet, rlogin, rsh,
cron, etc) will all access limits from the interactive domain and set these limits when a "job" is
initiated.

Supported Limits for Jobs
The new job limits are modeled on IRIX process limits and extend these limits across all the
processes in a job with the addition of limits to control number of processes per job and number
of tapes per job.

Currently, the existing getrlimit and setrlimit library routines provide access to per-process
limits.

Job limit values will be manipulated via the new setjlimit and getjlimit library routines.

There is also a jlimit command for users and administrators to display or alter a jobÕs limits.

The ps command will be modified to display the new job ID. Job Ids are unique in a cluster,
similar to array session handles.

IRIX Job Limits Status
The IRIX Kernel Job Limits project has taken pains to gather, document, and analyze all job and
limit relates requirements for IRIX. The user Interface and design details are completed and
documented and much of the IRIX kernel changes are complete. We will begin beta testing this
feature at Boeing in September. Generally availability of the IRIX Job Limits feature will be in
IRIX 6.5.7 in Q1CY00 or sooner. We are working with the engineers at Platform Computing to
integrate IRIX Kernel Job Limits with their LSF workload management product.

ÊÊ

IRIX Comprehensive System Accounting
(CSA)
Overview
Currently, IRIX supports two modes of accounting, standard System V accounting, and an
extended accounting feature. The current implementation of IRIX standard System V accounting
provides the standard set of System V user and administrator accounting commands and kernel
counters. The IRIX extended accounting feature additionally provides process and array session
accounting but does less resource consumption reporting than the UNICOS Cray System
Accounting feature. There are no native IRIX commands to process the raw data collected by
IRIX extended accounting (other than using SAT commands to print the accounting records).

IRIX CSA is a superset of the capabilities provided by System V and extended accounting, with
extensions for additional resource counters, job accounting, job summary accounting (deferred),
parallel processing accounting (deferred), user access to job accounting (ja command), daemon
accounting, flexible accounting periods, flexible billing units, and cluster accounting (deferred).
In other words, it will provide in IRIX, the functionality that our UNICOS CSA users are
accustomed to.

These three modes of accounting are independent of each other such that none, any or all three
accounting modes can be enabled at the same time.

There are just too many features planned for IRIX CSA to get them all into the same release and
still deliver it to customers in a timely fashion so we are using a Phased Release strategy.

Phase 1 will contain most functionality needed including:

• Job accounting

• User access to job accounting (ja command)

• Daemon accounting

• Flexible accounting periods

• Flexible System Billing Units (SBUs)

• More accurate time accounting

• Machine independent time accounting (i.e. Times externalized in microseconds)

• Additional ID fields: pid, ppid projid, jobid & ash

• More control of volume of information generated by kernel

• All accounting data written to pacct file (no nqacct or tpacct files)

• Support of cluster (pacct file will contain machine information)

Post Phase 1 features include:

• Support for specific hardware capabilities:

Multi-tasking records

MPP records for MPI jobs

• Incremental accounting for long running jobs

• Accounting by Array Session Handle (ASH)

• API for reading the accounting records

IRIX CSA Status
The IRIX CSA project has gathered, documented and analyzed all IRIX accounting related
requirements. The high level design is complete and the detailed design is nearing completion.
Much of the kernel and higher level code is also complete. The IRIX CSA feature will begin beta
testing at Boeing in December and will be generally available with IRIX 6.5.8, in Q2CY00 or
sooner. We are working with the engineers at Platform Computing to integrate IRIX CSA with
their LSF workload management product.

IRIX Scheduling
There are three topics with regards to IRIX scheduling which will be discussed; the Share II fair
share scheduler from Aurema, the Miser scheduler, and the eXtensible Resource Scheduler
(XRS).

Share II Resource Manager
The Share II Fair Share Scheduler allows an organization to create its own resource allocation
policy based on its own assessment of how resource usage should be fairly distributed to
individuals or arbitrarily grouped users. Users or groups of users can be guaranteed a certain
percentage of the machine. The scheduler makes users compete rather than processes and uses
group dynamics to keep overall usage fair. Currently Share II works only on a single system and
is available for IRIX 6.5.

Figure 2 shows a quick example of how a machine using Share II could be configured to be
shared equally across three separate groups, Physics, Chemistry & Math, and then within each
group, different users can be given varying amounts of shares.

Ê

Figure 2 - Share II configuration

Miser
Overview
Miser is a user level deterministic batch scheduler that generates a non-conflicting schedule of
jobs with known time and space requirements. Given a set of jobs to schedule, Miser searches
through a list of resource allocation schedules to find an allocation that best fits the job using a
specific scheduling policy. It was first generally available with IRIX 6.5. Its usage started out
pretty light in part because it did not initially meet some of the users expectations and because its
early stability was an issue.

Recent Improvements
Much effort has been put into Miser over the last 9 months to increase its reliability and to add
some important new features.

• Many kernel panics have been resolved.

• Improving the way in which the kernel scheduling utilizes locks has increased the
repeatability of jobs.

• A schedule repack feature was added to increase the over-all machine utilization.

• Miser_cpuset job tracking problem

• Miser_cpuset recovery mechanism

• Additional information in command output

WeÕve also improved the Miser documentation by rewriting the Miser section in the IRIX Admin
Configuration & Operations manual and by beefing up the man pages significantly.

These efforts have made Miser much more stable and usable in IRIX 6.5.4. One group that will
benefit from these changes is message passing users on time-shared systems whom can now
better use Miser to get the synchronized scheduling they often need. For more information about
using MPI with Miser, IÕd refer you to the paper titled "WhatÕs New in the Message Passing
Toolkit?" in the CUG proceedings.

Miser Plans
In IRIX 6.5.5, miser_cpusets will be enhanced to be ccNUMA aware, which will allow jobs to
ensure that the memory required by the job is allocated on the same node boards as the CPUs
used by the job. Also, the job will have the ability to request that memory for its exclusive use.
Both of these features will improve the job's repeatability.

We will likely be integrating Miser queues & miser_cpusets to allow the use of miser_cpusets
for jobs submitted and scheduled through Miser. If our prototyping of this goes well this may be
available in IRIX 6.5.6.

We are also working with Platform Computing to get Miser & miser_cpusets integrated into LSF
4.0, which will be available the end of this year or at the latest LSF 4.1 available in Q1CY00.

Going forward, we will continue our work to increase MiserÕs stability and will build on the
functionality Miser provides by adding much needed new features into the next generation IRIX
resource scheduler which we are calling the "eXtensible Resource Scheduler" or simply XRS.

Ê

IRIX eXtensible Resource Scheduler (XRS)

Overview
The eXtensible Resource scheduler is an extension of the Miser scheduler concept. XRS is a
system that allows clients to query resource availability information, lock resource states, make
resource reservation requests, confirm the status of reservations, and eventually claim the
reservation.

Where as Miser only considers the logical processor and memory resource requirements of a job
while attempting to determine when the job will be able to run, the XRS system provides a
flexible resource reservation framework which includes a strict and well defines relationship
with the IRIX kernel. In addition, this framework can be extended by customers to meet their
unique scheduling requirements.

The focus of the XRS system will be to manage resources, specifically CPU and memory, to help
customers achieve better application performance and repeatability of results. This is
accomplished by careful scheduling of the system resources so that they are not oversubscribed,
or that the resources are oversubscribed in a controlled manner. In addition, the XRS system will
incorporate the ability for users to specify placement requirements for their jobs. The scheduling
of resources will be done based upon the placement requirements for a job.

Ê

Scheduling Domains
Using XRS, the system is partitioned into two scheduling domains - the TimeShare domain and
the XRS domain. The TimeShare scheduling domain will utilize scheduling attributes as
expected for timeshare UNIX systems. The XRS scheduling domain will utilize a stricter set of
scheduling attributes that rely upon reservation of resources by jobs submitted into the
scheduling domain through the XRS daemon. By default, all processes will belong to the
TimeShare scheduling domain - this is the traditional UNIX timeshare scheduling domain. In
order for a job to become a member of the XRS scheduling domain, a resource reservation
request must be made with the XRS daemon. When a process claims that reservation, an XRS
task will be created. All processes that are members of that task will belong to the XRS
scheduling domain. The XRS system will be responsible for evaluating the resource
requirements of the request, reserving resources for the request, and blocking the request from
creating a task until the reserved resources are available.

Conceptually, there are two paths that allow a task to be launched in the XRS domain. For batch
submission users, the user will submit a batch-job to a batch management system such as LSF,
PBS, or CODINE. Assuming that the batch management system has been integrated with XRS, it
can choose to execute the batch-job in either the XRS domain or the TimeShare domain. If the
batch management system chooses to execute in the XRS scheduling domain, it will begin a
dialog with the XRS server to communicate resource requirements, obtain a reservation of
resources, and eventually claim the reservation and launch the task. Dialog with XRS will take

place via a published API.

Interactive users will also be able to execute tasks in the XRS scheduling domain. To execute
tasks in the XRS domain, the interactive user will need to use an XRS client command. The XRS
client command will perform the dialog with the XRS server to communicate resource
requirements, obtain a reservation of resources, and then block, waiting to accept the reservation
and launch the task. Essentially, the XRS client will be a simple wrapper for the published API
used to communicate with the XRS server. A diagram of the submission of jobs into the various
scheduling domains is provided in Figure 3.

Figure 3 - Submission of jobs into scheduling domains

Ê

Scheduling Partitions
The XRS scheduling domain can be organized into various scheduling partitions. A scheduling
partition is defined as a collection of resources and the scheduling policy that manages those
resources.

The collection of resources that will be managed in the initial implementation will include:

• CPU

CPU resources will be controlled by indicating the number of CPUs and their attributes.
Attributes of a CPU include the speed of the processor, cache size, cache speed, the size of
assumed local memory, etc.

• Memory

Memory resources will be controlled by indicating the amount of memory required. Memory
resources will be maintained as discrete items, where an item is comprised of the amount of
memory resident on a node board. Memory resources will also have cross reference
information that indicates the CPUs that are local to the memory resource.

• Topology

Topology requirements will be specified using a dplace-compliant placement file that is
supplied as part of a resource request. The XRS system will honor the placement
specification as per dplace, but will be restricted to the scheduling partition that the request is
being scheduled against.

Resources will be related based upon their locations within the hardware graph filesystem
(hwgfs). Placement decisions will be made using the hwgfs relationships.

Partition Scheduling Policies
The scheduling policies that will be used to manage the partitions include:

• Predictive

The Predictive scheduling policy provides predictable completion times. A resource request
is scheduled and placed in the first time slot available that satisfies the resource requirements
specified by the request.

The start and end times for the resource reservation are fixed and will not change. If a job
finishes prior to the end of the reservation period, the schedule will not be adjusted to fill in
the gaps in the schedule. This policy does not provide for the pre-emption of jobs.

• Availability

The Availability scheduling policy is an extension of the Predictive policy. A resource
request is scheduled and placed in the first time slot available that satisfies the resource
requirements specified by the request. The start and end times for the reservation are
determined, but are subject to change. If a job finishes prior to the end of the reservation
period, the schedule will be adjusted to fill the gaps that appear in the schedule. The re-
ordering of the schedule will first consider the run-ordering of the requests and consider the
efficient packing of the schedule as a secondary concern. This policy can run concurrently
with the Preemptive policy.

• Priority

The Priority scheduling policy is an extension of the Availability policy. All requests for
resources that are managed by this policy will be assigned a default priority. Requests with
the same priority will be scheduled using a first fit approach. Requests that are submitted
with higher priority will be scheduled prior to lower priority requests; this will cause a
schedule re-ordering for all requests of lower priority.

Priorities will be managed by an access control list (ACL) for the partition. All users will
assume a default priority. Users that have been given privilege via the ACL will be allowed
to specify higher priorities for their requests. This policy can run concurrently with the
Preemptive policy.

• Shared

The Shared scheduling policy allows oversubscription within a partition. Non-renewable
resources, such as memory, must be specified and reserved. However, renewable resources
may be shared and can be oversubscribed. This policy can run concurrently with the
Preemptive policy.

• Preemptive

The Preemptive scheduling policy is a supplemental scheduling policy that may run
concurrently with the Availability, Priority, and Shared scheduling policies. A request cannot
preempt another request that is running as the result of a preemption. The request must first
be submitted to the partition as per the default scheduling policy. Privileged users can then
specify that the request should preempt current request(s) in the resource schedule. The
preemption will cause a re-ordering of the schedule so that the preempted requests will be re-
scheduled prior to requests that followed it in the schedule prior to the preemption. When
specifying active reservations that should be preempted, the privileged user can specify that
the job be suspended or check-pointed. If the job is suspended, the memory resources will
not be available to the preempting request. If there is not enough memory for the preempting
request, the preemption will fail. The suspended or checkpointed jobs will be restarted when
the new resource reservation period for the jobs is active.

In all scheduling policy cases, except Shareable, the user must specify the amount of time that
they will require the requested resources. In future work it may be possible to allow large-grain
time-slicing of reservation periods, when this is possible the specification of a time restriction
may be eased.

Ê

ÊIRIX XRS Status
The IRIX XRS project has gathered, documented and analyzed all IRIX scheduling related
requirements. Then, a concept paper was created and reviewed. Prototyping, further research and
the high level design is in progress. The IRIX XRS feature, if all progresses on schedule, will
begin beta testing at Boeing in Q2CY00 and will be generally available with IRIX 6.5.9, in
Q23CY00. We are working with the engineers at Platform Computing to integrate IRIX XRS
with their LSF workload management product.

Ê

Workload Management

Load Sharing Facility (LSF)
SGI is partnering with Platform Computing to deliver the Load Sharing Facility (LSF) as our
workload management standard. Some of the highlights of this partnership include:

• LSF 3.2 for IRIX, UNICOS & UNICOS/mk available now

• LSF will support SNx & SVx

• MPT supported with LSF Parallel available now

• NQE features in LSF 4.0 available in Q4CY99:

• File Transfer Agent (FTA)

• Improved output file handling

• UNICOS accounting support

• Job-based limits for major resources

• Integrating IRIX job limits, CSA, Miser, and XRS with LSF

See the paper titled "LSF Workload Management System Status and Plans" in the CUG
proceedings for more information regarding LSF.

Network queuing environment (NQE)
The NQE product is feature complete as of the NQE 3.3 release and continues to be supported on
SGI/Cray Platforms. This means that there will continue to be occasional (2-4 times per year)
updates to NQE 3.3 through 2004. These updates will include fixes for critical customer
problems and the occasional hardware related fix. NQE on non SGI platforms is retired.

The IRIX job limits and CSA work will be utilized by NQE in a future NQE 3.3.0.xx update to
resolve these long outstanding critical inconsistency issues between the UNICOS and IRIX
versions of NQE.

Ê

Ê

Ê

Ê

Ê

IRIX Resource Management Roadmap
The IRIX Resource Management roadmap is shown in figure 4 and can be summarized as
follows:

• IRIX Job Limits in IRIX 6.5.7 (Q1CY00)

• IRIX CSA in IRIX 6.5.8 (Q2CY00)

Miser much more reliable and performs better in IRIX 6.5.4

• IRIX XRS in IRIX 6.5.9 (Q3CY00)

• LSF is our workload management solution

• NQE 3.3 supported on SGI platforms through 2004

Ê

Figure 4 - IRIX Resource Management Roadmap

