
 1 CUG 1999 Spring Proceedings

The Integrative Role of COWÕs and Supercomputers in Research
and Education Activities

Don Morton, Ganesh Prabu, Daniel Sandholdt, Lee Slater
Department of Computer Science

The University of Montana
{ morton | gprabu | marist92 | lslater} @cs.umt.edu

ABSTRACT: Experiences of researchers and students are presented in the porting of code between a cluster of
Linux workstations at The University of Montana and the Cray T3E at the Arctic Region Supercomputing Center.
We test the thesis that low-cost workstation environments may be utilized for training, and to develop and debug
parallel codes which can ultimately be moved to the Cray T3E with relative ease for realizing high performance
gains. We further present ideas on how the computing environments of supercomputers and COW’s might benefit
from more commonality.

1 Introduction
In the early 1990’s, several pivotal events, revolving
about the availability of low-cost commodity
processors, occurred which forever changed the nature
of scientific and high-performance computing. The
improving line of Intel x86 architectures and the
increasing use of the growing Internet encouraged the
development of the Linux operating system, ensuring
that anybody could own a Unix workstation for home
or business use. During this same time-frame,
researchers at Oak Ridge National Laboratory (and U.
Tennessee at Knoxville) initiated development of PVM,
a highly-portable library and environment for the
construction of message-passing programs on clusters
of workstations (COW’s). In addition to supporting
well-known architectures, PVM supported Linux as
early as 1993. Also during this time, Cray Research,
Inc. introduced its MPP Cray T3D based on the low-
cost DEC Alpha chip, running its own version of Unix.
In addition to supporting its own CRAFT environment,
the T3D supported PVM (though somewhat different
from the “standard” PVM).

The convergence of these tracks marked the beginning
of a healthy, complementary relationship between
COW environments and state of the art supercomputers
such as the Cray MPP series. Though some Linux and
Cray supporters have felt somewhat threatened by the
presence of a “rival,” the reality is that both
environments hold important niches, and an integration
of the environments may easily result in a win-win
situation for everyone.

Our thesis is that the COW environment is well-suited
for training users in concepts of parallel programming
and in the development (which often means a lot of
debugging) of parallel codes, all at relatively low
equipment cost. Though some Beowulf clusters have
achieved remarkable performance benchmarks, we

believe the majority of parallel programmers have
insufficient resources to construct such a
“supercomputer.” For this reason, powerful machines
such as the Cray T3E will always be high-demand
machines for large-scale production runs. Such
environments often favor the batch user, and, in our
experience, supercomputer centers encourage such long
batch jobs in order to achieve high CPU utilization.
Though these centers try to keep a few interactive PE’s
available, it is often difficult for several programmers
to test their code (or debug) in an interactive manner.
When it comes time to hold group training sessions in
parallel computing, it becomes even more difficult. So,
we maintain that COW environments should be used
for this sort of interactive parallel computing, allowing
trainees and developers the interactivity (and
sometimes lack of network delays) they need, while
freeing the MPP CPU’s for the large-scale batch jobs
that utilize these expensive resources best.

In this paper, we accept the above thesis and begin to
explore the issues of integrating COW and MPP
supercomputer resources so that users may migrate
between the environments as effortlessly as possible.
We begin with a case-study – a recent graduate-level
course in parallel computing in which students are
initially trained on a Linux cluster and, towards the end
of the semester port their codes to the Cray T3E. Then,
we discuss some of the research activities that have
been taking place in the past four years using both
Linux and Cray MPP systems. Finally, we present our
own opinions on how COW’s and supercomputers may
be better integrated for the benefit of all.

2 Computing Environments
The author has been working with Linux since 1991
and with the Cray T3D/E series since 1993. With
funding from the National Science Foundation, a poor

 2 CUG 1999 Spring Proceedings

man’s supercomputer (Linux cluster) was constructed
in 1995 to provide a local environment for education
and continued research in parallel computing. This
funding supported summer residencies at the Arctic
Region Supercomputing Center. Therefore, there has
been constant emphasis placed on developing codes
that run on both the Linux cluster and the Cray T3D/E,
and to create similar programming environments.
Sometimes this means that we don’t use certain features
unless they’re available on both platforms. For
example, until recently there was no Fortran 90
compiler on the Linux cluster, so any Fortran code was
written in Fortran 77 style for both platforms.
Likewise, although shmem is a powerful programming
tool on the Cray MPP series, we do not use it in
“portable” codes (though, sometimes we use
conditional compilation so that if the program is
compiled on the Cray, shmem is used, otherwise MPI or
PVM).

The Linux cluster at The University of Montana (see
Figure 1) consists of nine 100MHz Pentiums. One
machine, possessing 128 Mbytes of memory, acts as an
account and file server for the other eight machines,
each possessing 64 Mbytes of memory. The machines
are connected by a 100Mb Fast Ethernet. Although
users may log into any machine (via NIS) and see their
file systems (via NFS), the primary mode of use is to
log in to the server. Since users have valid accounts on
each machine through NIS, and their applications can
be seen by each machine via NFS, there is no need to
transfer an application to each machine for parallel
computing. Thus, in many respects, users of the system
can run programs transparently, much as they would on
a T3E. The system supports PVM, MPI and recently,
Portland Group’s HPF.

The Cray T3E at the Arctic Region Supercomputing
Center consists of 272 450-MHz processors. Until
recently, the network connections to/from ARSC were
very slow, making remote use of the system frustrating,
which of course increased the need to work on code
locally. Outside network connections have improved
substantially since April 1999, but, due to very high
CPU utilization, it still is often more convenient to
perform training and development activities on the
local Linux cluster.

3 Case Study Ð Parallel Programming
Course
In the Spring 1999 semester, a graduate-level (primarily
masters degree students) course in parallel processing
was offered at The University of Montana with the
intent of giving students an applied, hands-on
introduction to parallel computing. One expected
outcome of the course was to test the thesis stated in the
Introduction. Students would be initially introduced to

parallel programming on the existing cluster of Linux
workstations, using PVM, MPI, and High Performance
Fortran. Then, through the support of the Arctic
Region Supercomputing Center, students would use
accounts on the Cray T3E to execute and compare
programs that were previously run on the Linux cluster.

Figure 1: University of Montana Linux cluster.

One of the first parallel programming activities that
students engaged in was the PVM implementation of
the n-body problem. In its simplest form, we
considered a set of masses in two-dimensions and
calculated the net gravitational force applied to each
particle. A quick and dirty parallel algorithm was
introduced so that students could gain experience in
writing their first parallel program that did something
“useful.” For most students, this was a difficult task,
and they spent a lot of time learning how separate
executables could interact in a nondeterministic
fashion, plus they began to familiarize themselves with
the mechanics of launching parallel executables. Such
difficulty would have occurred on either our Linux
cluster or the T3E, so it was more appropriate to use
local resources for this. Though PVM doesn’t seem as
popular as it did in the early 1990’s (a time when it had
little competition), it certainly appears in much legacy
code, and it served to introduce students to something
other than SPMD.

Through the semester, students were also introduced to
MPI and HPF, and were required to implement the n-
body problem in each of these paradigms. Since the
students had already been exposed to a message-
passing implementation with PVM, an MPI
implementation was simpler for them, and they enjoyed
the higher-level constructs provided by that library. Of
course, those students who didn’t constrain themselves
to SPMD programming with PVM had to modify their
codes extensively when using MPI. Finally, students
had little difficulty modifying their programs for HPF,
but got a little confused playing around with HPF
compiler directives for optimizing their code.

UM Scientific Computing Lab

100BaseT Hub

10BaseT Hub

p1 p2 p3 p4 p5 p6 p7 p8

frontend.scinet.prairie.edu

scinet.prairie.edu

Internet

LittleHouse.prairie.edu

elk.prairie.edu

 3 CUG 1999 Spring Proceedings

At this point, students had written and executed
programs in PVM, MPI, and HPF, all on the Linux
cluster, and were becoming somewhat proficient in
writing simple parallel programs. The next step was to
introduce them to readily-available performance
analysis tools that would run on the Linux cluster, and
some that would also be available on the T3E. Students
were first introduced to xpvm and xmpi, which provide
users with a graphical interface for running, then
viewing tracefiles. Both tools are freely available and
support Linux environments. Although it is assumed
that a user could generate a tracefile on the T3E with a
PVM or MPI program, then use xpvm or xmpi on
another machine to view it, this wasn’t attempted, so it
remains merely an assumption.

Students were also introduced to vampir and pgprof.
Vampir, a performance analyzing tool, and
Vampirtrace, a library of functions for generating trace
files, is a commercial product for use with MPI
programs. The developing company, Pallas, was kind
enough to allow us to use the product for evaluation
purposes. The vampir tools had the great advantage of
being portable between the Linux cluster and the T3E.
For example, one could generate a trace remotely on
the T3E, then transfer it to a local machine for viewing.
Pgprof, Portland Group’s profile analyzer for HPF
programs was distributed with the PGHPF package for
the Linux cluster, and we found that it, too, would
allow for trace generation on one platform with
subsequent viewing on another platform.

As a midterm exam project, students were required to
develop performance models for a parallel Jacobi code
(which they were provided with) implemented with
MPI, then test their “theoretical” performance against
actual execution on our Linux cluster. This forced
them to deal with complexity analysis of parallel
algorithms while providing them with more experience
in running codes for performance analysis.

In addition to the previous work, each student pursued
an individual project of their own choosing to either
develop and analyze parallel code for a problem of
interest, or parallelize existing code and then analyze
the new code’s performance. Topics pursued by the
students included dictionary algorithms, machine
learning, image processing, molecular modeling,
implementation of Java-based PVM, parallelization of
an existing plasma code, and finite element modeling.
Students developed and tested their code on the Linux
cluster, but several moved their code to the T3E for
further analysis.

The final six weeks of the course were devoted to
providing students with experience in dealing with the
issues of portability between the Linux cluster and the
Cray T3E in an effort to test our thesis and to provide

material for this paper. Two lab sessions were
developed – the first session was simply an introduction
to the use of the T3E environment, in which students
were required to compile previously-ported code, and
then execute, in both interactive and batch (NQS)
modes. Most students found this fairly straightforward.
A second lab session of six hours was held on a
Saturday, in which the students were given favorable
access to the PE’s at ARSC. This lab session consisted
of five primary tasks (described below), and it was
believed that the majority of the students would be able
to finish most of the work within the six hours. In fact,
only one student came close to finishing in this time
frame, while others devoted a considerable amount of
extra time.

Three students, listed as co-authors of this paper,
performed some additional tests as special projects
described later.

3.1 Description of Linux/T3E
Laboratory

3.1.1 Conversion of Linux PVM n-body PVM
Program for T3E Execution

Previous to this assignment, students were introduced
to the differences in standard PVM (referred to as
network PVM by Cray) and Cray MPP PVM. Since
network PVM relies on the spawning of new tasks from
an original task, and MPP PVM requires an SPMD
mode of programming, does not support the
pvm_spawn() operation, does not support the concept of
PVM tasks having parent tasks, and so on, producing a
portable code requires several tricks which are
incorporated through conditional compilation (see
Figure 2 for the relevant code excerpts). In general,
this requires setting up a network PVM code that, once
all processes have been spawned, assigns a logical task
number to each process through group operations, and
runs identical tasks in SPMD mode. On Cray MPP
platforms, tasks are not spawned, and cannot get their
logical PE number by joining a global group, as in
network PVM.

#ifdef _CRAYMPP
// In Cray MPP, the "global" group is
//indicated by null pointer
#define GROUPNAME (char *) 0
#else
#define GROUPNAME "alltasks"
#endif

….

#ifdef _CRAYMPP
// Cray MPP does not support joining a
//"global" group, so we simply

 4 CUG 1999 Spring Proceedings

// use the Cray-specific routine for getting
the PE number
mype = pvm_get_PE(mytid);
#else
mype = pvm_joingroup(GROUPNAME);
#endif

…..

// Determine total number of tasks
// In Cray MPP, we get this from command line
//using pvm_gsize(), in other systems, we
//specify, either in the program, on command
// line, or in a file
#ifdef _CRAYMPP
ntasks = pvm_gsize(GROUPNAME);
#else
ntasks = 4;
#endif

……..

#ifndef _CRAYMPP
// This is not executed for Cray MPP PVM -
//pvm_spawn() is not implemented - all tasks
//startup SPMD at beginning
if(mype == 0) // I'm the master, spawn the
others
 info = pvm_spawn(argv[0], (char**) 0,
PvmTaskDefault, (char*) 0,
 ntasks-1, &tid_list[1]);
#endif

……

// Wait for everyone to join group before
//proceeding
info = pvm_barrier(GROUPNAME, ntasks);

……

// Get TID of everyone else in group
for(i=0; i<ntasks; i++)
 tid_list[i] = pvm_gettid(GROUPNAME, i);

// At this point, we know the TID's of all
//tasks, so we can communicate

Figure 2: Code excerpts from portable PVM
program.

The goal of this task was to have the students port their
Linux PVM n-body codes for execution on the Cray
T3E. Once instructed in how to modify a code for this
type of portability, most students found it to be
relatively painless. However, the differences between
Cray MPP and network PVM have been an impediment
to portability since the introduction of the Cray T3D,
and users of PVM need to be aware of this.

 Additionally, Cray MPP compilers seem to be less
forgiving than others (e.g. Gnu compilers) of simple
programmer omissions, such as failure to initialize a
variable. Other problems included the difference in the
default handling of incorrect arguments within the
atan2() function – Gnu compilers would simply return

a zero from this function, but Cray MPP compilers
would abort and dump core. Of course, these problems
are inherent in any code, not just PVM, ported from a
Linux cluster to the T3E, and one can argue that the
Cray MPP environment simply forces programmers to
adhere to good programming practices. Most of these
problems are easily solved through the use of compiler
flags. The point is that this is a problem area in the
“coupling” of Linux and T3E systems, and needs to be
addressed in such a scenario. The majority of the
students encountered some problems in moving their
code from the Linux system to the T3E. However, in
almost all cases, a problem in porting was a direct
result of a programmer error that the original system
didn’t catch. In general, experienced students found the
transition from Linux to the T3E to be rather
straightforward, whereas those students with less
experience had a very difficult time.

Some representative timings on the Linux cluster and
the Cray T3E are displayed below in Table 1. The wide
variation in timings results from different
implementations of a solution, and often, from varying
loads on the Linux cluster. The timings are from the
calculation of forces on N=1000 particles, with two and
five processors. Students were also required to run
larger problems on the Cray T3E so that they would
appreciate the larger problem sizes facilitated by the
T3E, and see the performance gains of coarse-grained
problems.

Table 1: Selected Linux vs. T3E timings for PVM n-
body problem.

PE’s Linux Cray Linux Cray Linux Cray
2 5.5 1.5 126 8.2 3.8 0.79
5 3.2 1.2 1.2 2.6 1.8 0.65

3.1.2 Performance Analysis of n-body MPI
Program (Linux and T3E)

In the next task, students were to port their Linux n-
body MPI codes to the T3E and compare execution
times. Their MPI programs used higher-level,
presumably more efficient, constructs for scattering and
gathering data, so any comparison of the performance
with PVM is probably fruitless. Students found the
port of an MPI program to be quite painless, other than
the basic problems inherent in moving any code across
platforms, as discussed above. Again, good
programming practices can reduce such problems.

Some representative timings on the Linux cluster and
the Cray T3E are displayed below in Table 2. Again,
the wide variation in timings results from different
implementations of a solution, and often, from varying

 5 CUG 1999 Spring Proceedings

loads on the Linux cluster. The timings are from the
calculation of forces on N=1000 particles, with two and
five processors. As with the PVM component
described above, students were also required to run
larger problems on the Cray T3E so that they would
appreciate the larger problem sizes facilitated by the
T3E, and see the performance gains of coarse-grained
problems.

Table 2: Selected Linux vs. T3E timings for MPI n-
body problem.

PE’s Linux Cray Linux Cray Linux Cray
2 13.8 1.7 5.4 0.72 5.4 0.60
5 12.0 1.4 3.9 0.91 1.6 0.33

3.1.3 Performance Analysis of n-body MPI
Program Using Vampir (Linux and T3E)
In order to introduce students to performance analysis
tools, and to demonstrate yet another commonality
between COW’s and supercomputers, Vampir was used
to produce visual traces of their MPI n-body programs
executed on both the Linux cluster and the Cray T3E.
Vampir is actually made of two components – vampir,
the GUI viewer, and Vampirtrace, a library of routines
that are linked in to an MPI program to produce
runtime traces. By linking in Vampirtrace libraries on
either system, program execution will produce a trace
file for viewing in the Vampir program. These traces
are portable, which means that one generated on the
T3E can be viewed with Vampir on another platform,
and vice-versa. Students were excited about the ability
to “see” their parallel program execute, and impressed
with the idea that this was available on both platforms.
One student remarked that the information provided
was much more helpful than that from xmpi.

3.1.4 Performance Modeling and Analysis of MPI
Jacobi Program on T3E

As part of a prior assignment, students were provided
with an MPI code to solve a system of equations via the
Jacobi method. The students were to construct a
performance model and compare theoretical and actual
execution times for the Linux cluster. This lab required
that they extend their work and create a performance
model for predicting T3E performance, then compare
with actual execution times. Since a portable code had
already been provided to them, and they had begun to
gain some experience in working on both platforms,
this was fairly simple for them.

3.1.5 Performance Analysis and Improvement of
an MPI Code

To encourage students to think about optimization in a
parallel program, they were given a fairly simple

program which would read data from an input file and
distribute the data equally among processors. Then,
each processor would perform a series of operations on
its data (statistics operations) and finally, return some
results to a master process. The program was
intentionally coded with inefficient communication
mechanisms. For example, when the master process
was to receive results from all of the other processes, it
would wait for a result from PE1, then PE2, etc.
Students were to produce a Vampir trace of this
original program on both the Linux cluster and the T3E,
as shown in Figures 3 and 4, then use this information
to modify the program for less “waiting” time. Again,
this program was given to them, already running on
both systems, so the exercise simply allowed the
students to witness the commonality of the systems.

Figure 3: Vampir trace from Linux cluster.

Figure 4: Vampir trace from Cray T3E

3.1.6 Conversion of C++ MPI Jacobi Program to
Fortran
As an extra project, one student was tasked with
converting a C++ MPI Jacobi program provided to the
class earlier in the semester, to a Fortran version for
testing and evaluation on both Linux and T3E systems.
Unfortunately, this exercise revealed a serious flaw in
the local setup of Fortran 90 vs. MPI on the Linux

 6 CUG 1999 Spring Proceedings

cluster. We found on the Linux cluster that we were
unable to use the Portland Group’s pgf90 compiler and
successfully link in MPICH library calls. MPICH was
rebuilt several times with different flags in an effort to
generate function names that pgf90 would agree with,
but this was unsuccessful. Although it would have
been possible to use the Gnu g77 compiler for this, it
didn’t contain the dynamic memory allocation features
desired. Therefore, this was a scenario in which a
portable code was not achieved – it was simply
developed on the T3E.

Fortran codes have generally been just a little more
problematic than C/C++ codes on Linux clusters.
Typically, in order to insure portability, it has been
necessary to use Fortran 77 as a lowest common
denominator. Recently, however, Portland Group has
supported Linux, providing the ability to write portable
Fortran 90 and HPF codes on a wide range of systems.
Though we experienced difficulties, we presume they
can be remedied without too much effort. Again, this is
simply a problem area that needs exploration if we are
to achieve the goal of COW/workstation integration.

The C++ MPI code was converted to Fortran 90 on the
T3E with minor porting problems, but, ultimately, a
conversion to Fortran was successful, and timings of
the C++ vs. Fortran 90 MPI codes for the Jacobi
algorithm are shown in Table 3, suggesting a
substantial benefit of using C++ over Fortran 90 for this
particular code on the T3E.

Table 3

N=8400 N=10080 N=12600
PE’s C++ F90 C++ F90 C++ F90
4 1.2 6.8 1.4 10.1 NA NA
6 0.8 4.4 1.0 6.3 1.8 10.2
8 0.6 3.1 0.7 4.6 1.3 7.4

3.1.7 Conversion of C++ MPI Jacobi Program to
C++ PVM

Another student was tasked with taking the same C++
MPI Jacobi problem and converting it to PVM on both
the Linux cluster and the T3E. With the experience
gained from the previous assignments of the semester,
it turned out to be fairly straightforward. In general,
performance differences (Tables 4 and 5) between MPI
and PVM on the Linux cluster were small, though there
were isolated exceptions. On the T3E, at least for this
small sample, it appears that PVM exhibited better
performance.

Table 4: Linux timings for MPI/PVM comparison

N=512 N=1600 N=3200
PE’s MPI PVM MPI PVM MPI PVM
2 0.2 0.2 1.5 0.8 6.1 3.0
4 0.2 0.2 0.8 1.0 3.2 3.4
8 0.1 0.2 0.5 0.9 2.0 2.5

Table 5: T3E timings for MPI/PVM comparison

N=8000 N=10000 N=16000
PE’s MPI PVM MPI PVM MPI PVM
8 0.40 0.31 0.62 0.41 NA NA
20 0.16 0.10 0.25 0.17 0.61 0.42
64 0.06 0.04 NA NA 0.20 0.15

3.1.8 Porting of Linux C++ Parallel Finite Element
Code to T3E

Finally, another student is pursuing an ambitious plan
to write an object-oriented, parallel, adaptive finite
element “toolkit.” Again, the ideal development
platform has been the local Linux cluster, though the
intent is to ultimately implement this on the Cray T3E
(the project is funded by CRI/ARSC under a University
R&D grant) to encourage development of finite
element codes.

To date, the student has developed software for 1D
finite element situations, and his task during the course
was to prototype a parallel system. The code uses
extensive object oriented designs, depending on C++
features such as virtual functions, inheritance, and
templates. The student performed all development on
our Linux cluster using MPI, ultimately revealing the
timings shown in Figure 5.

The port to the T3E was, surprisingly (to the author)
relatively painless. The T3E C++ compiler doesn’t by
default support the local declaration of index variables
within for-loops (though a compiler option provides
such support), so these loops were modified. As
described above, the T3E tends to be less forgiving of
programmer errors, so, by porting the code, the student
was able to discover some errors in his code which
didn’t appear when running on the Linux cluster
(though under different situations, they may have
revealed themselves in the future). The Cray T3E
timings are shown in Figure 6. It was interesting to see
that the charts of Figures 5 and 6 were quite identical,
with the time scale being the only significant
difference. Experience has shown, however, that
communication will become more significant when
moving to two and three dimensions, and the T3E will
show much greater scalability in these cases.

 7 CUG 1999 Spring Proceedings

1
2

4
6

8

N = 120

N = 240

N = 360

N = 480

N = 600

0

100

200

300

400

500

600

Time (sec)

P

Elements

Linear Diffusion - SCINET

N = 120

N = 240

N = 360

N = 480

N = 600

Figure 5: Linux cluster finite element timings.

1
2

4
6

8

N = 120

N = 240

N = 360

N = 480

N = 600

0

20

40

60

80

100

120

T
i

m
e

(
s
e
c
)

P

Elements

Linear Diffusion - CrayT3E

N = 120

N = 240

N = 360

N = 480

N = 600

Figure 6: Cray T3E finite element timings

4 Research and Development
Activities
Though the course activities described above provide a
recent example of how COW’s can facilitate the
training aspect of high-performance computing, the
cluster has in fact been used extensively, along with the
Cray T3D/E in code development since 1995.

The initial application for our Linux cluster was an
adaptive, parallel finite element code for fluid flow
simulations, written in Fortran/PVM. It was developed
on an RS600 cluster, then ported to ARSC’s T3D in
1994. Back then, T3D time was easy to get, but
network constraints made remote use very difficult.

Once our Linux cluster was assembled, this code was
ported to the system to provide a local development
platform for prototyping, testing and debugging.

Other research activities have resulted from
collaborations with University of Alaska’s Water
Research Institute to parallelize for the Cray MPP a
hydrologic model for arctic ecosystems, then, to couple
this hydrologic model with a parallel thermal model for
execution on the Cray MPP systems. These models
were written in Fortran 77, and, though a CRAFT
approach was considered (and even implemented
initially), portability of the code was a large issue, so
MPI was utilized. In these situations, typical model
runs would read in hundreds of megabytes of data, and
produced just as much, which was an impediment to
implementation on our small Linux cluster. However,
by using very small datasets just for prototyping and
development purposes, it was possible to utilize the
Linux cluster extensively in the initial phases of the
project. In fact, extensive debugging and analysis was
necessary at times, and it was much simpler to do this
work on a local workstation cluster than it would have
been over a slow network on a supercomputer where
we might have to wait several hours for a few PE’s.

5 General Summary of
COW/Supercomputer Integration
Issues
The goal of integrating COW’s and supercomputers
should focus primarily on the creation of similar
programming environments. Ultimately, code written
and executed on one system should be able to run on
another system without great porting problems. Users
should be able to move their T3E code to a local cluster
for further development and debugging, and not be
overwhelmed with differences in the programming
environments. Likewise, students and researchers
should be able develop algorithms and codes for
interesting problems on local clusters without having to
deal with supercomputing centers initially, yet, when
they’re ready for the powerful machines, they should be
able to move to such a machine with a minimal learning
investment. It is our opinion that supercomputer
manufacturers and supercomputing centers will benefit
by the presence of numerous clusters whose sole
purpose in life is to help and encourage more students
and researchers to try high-performance computing,
and create a larger base of experts in the field.
Likewise, the supercomputing centers will benefit by
not having to reserve large groups of PE’s for
interactive computing, and may be able to spend less
time training and helping users.

The more popular and necessary tools for parallel
computing – PVM, MPI, HPF – are available on a large

 8 CUG 1999 Spring Proceedings

number of platforms, so there is already a great deal of
commonality between COW’s and supercomputers.
Though MPI and HPF tend to be portable, the PVM
differences between COW’s and the Cray T3E are
substantial. If we are to assume that supercomputers
such as the T3E will not fully support network PVM in
the near future, then the obvious solution for portable
code is to insure we write it SPMD style from the
beginning, and encapsulate the necessary differences
within a startup routine.

Since shmem has proven to be so successful at reducing
“communication” costs on the T3D/E, it, and other such
tools should have a means to simulate their behavior
via underlying PVM or MPI, so that such codes can at
least be debugged and tested on COW’s. Alternatively,
programmers would need to be instructed in the use of
preprocessor directives so that their code uses a
portable message passing system on COW’s, and uses
shmem on the T3E.

The Cray T3E tends to have a simple user environment
for compiling and executing parallel codes. For
example, compilation of PVM and MPI programs
doesn’t require long flags to specify location of header
files and libraries. Of course, much of this may be
achieved through the creation of appropriate
environment variables, and this should be implemented
more on the COW environments in order to ease the
task of migrating from a machine such as the T3E,
where users don’t have to worry about such issues.
Additionally, users on the T3E can use the mpprun
utility to run all parallel programs, whether they be
PVM, MPI, or HPF. This contrasts with the typical
setup on a COW where users often need to start local
daemons on each machine, and they use different
commands for executing different types of parallel
programs. Many of these differences could be
encapsulated on COW’s behind scripts, and again,
doing so would ease the task of migrating from the
T3E.

Particularly with the presence of performance analysis
tools like Vampir (for MPI) and pgprof (for Portland
Groups HPF), there is already a great deal of
commonality between COW/supercomputer systems.
This continued dual-development should be
encouraged. Of course, both of the above tools are
commercial products, and may not be affordable for use
in some COW environments (where low cost is often a
very important factor).

With Totalview, it is possible to use a common
debugging tool for MPI, PVM and HPF programs on
numerous systems. This tool has been available on
Cray MPP series since at least 1994, and has improved
over time. It is apparently available for some COW
environments, but not yet Linux. Debugging tools on

Linux clusters tend to revolve about gdb (Gnu
debugger), and it is often very difficult, and sometimes
impossible to get such tools working for parallel
programs. As a result, effective debugging on a Linux
cluster tends to be based on printf statements.
Availability of a common debugger (like Totalview) for
Linux clusters would be highly desirable but, again,
such a tool would likely be expensive.

6 Conclusions
We have provided examples and discussed ways in
which COW’s and supercomputer (particularly Linux
vs. Cray MPP) platforms can play complementary roles
in high performance computing. The insight of
software developers in the past decade has resulted in
numerous opportunities for a large number of
researchers to enter the world of parallel computing,
and to do so in an integrated environment. Users of
COW’s and supercomputers can now talk in a common
language (e.g. PVM, MPI, HPF, Vampir) and indeed
use a wide variety of systems to suit their needs.

The numerous activities described in this paper provide
clear evidence that COW environments can serve as
training and development platforms in parallel
computing. In most cases, development and initial
testing and debugging of code could take place on local
COW’s where interactivity is often better than that
from a remote supercomputing center that emphasizes
maximum utilization of expensive resources. We also
suggest that even a major supercomputing center can
benefit immensely by offloading this training and
development work to the COW’s, leaving the expensive
supercomputer for the long, high-PE production runs.

Though recent reports have surfaced of remarkable
performances by Beowulf systems, we maintain that
these tend to be specialized systems, working on
problems well-suited for them. In the general
computing community, we suspect that a small Linux
cluster such as ours is the norm for small institutions.
Such systems are generally affordable and can be
adequately maintained by someone knowledgeable in
Unix system administration issues. Though the
performance of these systems will never compare to
that of the supercomputers, they are inherently valuable
to the supercomputing world by providing a low-cost
environment for training and development activities
which would often decrease the CPU utilization on the
supercomputers.

As an educational tool, COW’s are the perfect platform
for introducing students to parallel computing. This is
the platform where they can work interactively, make
many mistakes, and ultimately become experienced
enough to start using a supercomputer efficiently. We
further suggest that increased collaboration between
COW institutions and supercomputing institutions will

 9 CUG 1999 Spring Proceedings

allow for more training of HPC users and increased
demand for supercomputer resources.

7 Acknowledgements
The authors gratefully acknowledge the support of
SGI/CRI and the Arctic Region Supercomputing Center
for their long-term support of work described in this
paper and, recently, for the provision of student training
accounts on their T3E. We thank the National Science
Foundation for provision of the “start-up” funding for
the Linux cluster and logistical support of collaboration
with ARSC. Finally, we thank Pallas for their
generosity in allowing us to evaluate their Vampir
performance analysis tools on our cluster over the
Spring 1999 semester.

References
Foster, Ian. Designing and Building Parallel Programs.
Addison-Wesley, 1995.

Morton, D.J, K. Wang, D.O. Ogbe. “Lessons Learned
in Porting Fortran/PVM Code to the Cray T3D,” IEEE
Parallel & Distributed Technology. Vol. 3, No. 1, pp.
4-11, 1995.

Morton, D.J. “Development of Parallel Adaptive Finite
Element Implementations for Modeling Two-Phase
Oil/Water Flow,” in High Performance Computing
Systems and Applications, Kluwer Academic
Publishers, 1998.

Morton, D.J. “The Use of Linux and PVM to Introduce
Parallel Computing in Small Colleges and
Universities,” Journal of Computing in Small Colleges.
Vol. 11, No. 7, 1996, pp. 13-19.

Morton, D.J., Z. Zhang, L.D. Hinzman, S. O’Connor.
“The Parallelization of a Physically Based, Spatially
Distributed Hydrologic Code for Arctic Regions,” in
Proceedings of the 1998 ACM Symposium on Applied
Computing, Atlanta, GA, 27 Feb – 1 March 1998.

Morton, D.J., L.D. Hinzman, E.K. Lilly, Z. Zhang, D.
Goering. “Coupling of Thermal and Hydrologic Models
for Arctic Regions on Parallel Processing
Architectures,” in Proceedings of the 3rd International
Conference on Geocomputation, Bristol, UK, 17-19
September 1998.

