
1

Interacting with Gigabyte Volume Datasets on the
Origin 2000

Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, Peter-Pike Sloan, and Michael Parker.

Abstract—We present a parallel ray tracing program that computes iso-
surfaces of large-scale volume datasets interactively. The system is shown
for the gigabyte Visible Woman dataset.

I. I NTRODUCTION

Many applications generate scalar fields�(x; y; z) which can
be viewed by displayingisosurfaceswhere�(x; y; z) = �iso.
Ideally, the value for�iso is interactively controlled by the user.
When the scalar field is stored as a structured set of point sam-
ples, the most common technique for generating a given isosur-
face is to create an explicit polygonal representation for the sur-
face using a technique such asMarching Cubes[5], [13]. This
surface is subsequently rendered with attached graphics hard-
ware accelerators such as the SGI Infinite Reality. Marching
Cubes can generate an extraordinary number of polygons, which
take time to construct and to render. For very large (i.e., greater
than several million polygons) surfaces the isosurface extraction
and rendering times limit the interactivity. In this paper, we gen-
erate images of isosurfaces directly with no intermediate surface
representation through the use of ray tracing. Ray tracing for
isosurfaces has been used in the past (e.g. [10], [15], [25]), but
we apply it to very large datasets in an interactive setting for the
first time. In the appendices, we provide details that are new to
the literature that are necessary to implement this algorithm.

The basic ray-isosurface intersection method used in this pa-
per is shown in Figure 1. Conventional wisdom holds that ray
tracing is too slow to be competitive with hardware z-buffers.
However, when rendering a surface from a sufficiently large
dataset, ray tracing should become competitive as its low time
complexity overcomes its large time constant [7]. The same ar-
guments apply to the isosurfacing problem. Suppose we have an
n� n�n rectilinear volume which for a given isosurface value
hasO(n2) polygons generated using Marching Cubes. Given in-
telligent preprocessing, the rendering time will beO(n2). Since
it is hard to improve performance using multiple graphics en-
gines, this seems a hard limit when using commercially avail-
able graphics accelerators unless a large fraction of the polygons
are not visible [11]. If a ray tracing algorithm is used to traverse
the volume until a surface is reached, we would expect each ray
to doO(n) work. If the rays are traced onp processors, then we
expect the runtime for an isosurface image to beO(n=p), albeit
with a very large time constant and a limit thatp is significantly
lower than the number of pixels. For sufficiently largen, ray
tracing will be faster than a z-buffer algorithm for generating
and rendering isosurfaces. The question is whether it can occur
on ann that occurs in practice (e.g.,n = 500 ton = 1000) with
a p that exists on a real machine (e.g.,p = 8 to p = 128). This

Computer Science Department, University of Utah, Salt Lake City, UT 84112.
E-mail: [sparkerj shirley j ylivnat j hansenj sloanj map] @cs.utah.edu.

isosurfacescreen

eye

Fig. 1. A ray is intersected directly with the isosurface. No explicit surface is
computed.

paper demonstrates that with a few optimizations, ray tracing is
alreadyattractive for at least some isosurface applications.

II. RAY TRACING

Ray tracing has been used for volume visualization in many
works (e.g., [9], [20], [26]). Typically, the ray tracing of a pixel
is a kernel operation that could take place within any conven-
tional ray tracing system. In this section we review how ray
tracers are used in visualization, and how they are implemented
efficiently at a systems level.

A. Efficient Ray Tracing

It is well understood that ray tracing is accelerated through
two main techniques [19]: accelerating or eliminating ray/voxel
intersection tests and parallelization. Acceleration is usually ac-
complished by a combination of spatial subdivision and early
ray termination [9], [8], [24].

Ray tracing for volume visualization naturally lends itself to-
wards parallel implementations [14], [16]. The computation for
each pixel is independent of all other pixels, and the data struc-
tures used for casting rays are usually read-only. These proper-
ties have resulted in many parallel implementations. A variety
of techniques have been used to make such systems parallel, and
many successful systems have been built (e.g., [14], [27], [22],
[17]). These techniques are surveyed by Whitman [29].

B. Methods of Volume Visualization

There are several ways that scalar volumes can be made into
images. The most popular simple volume visualization tech-
niques that are not based on cutting planes areisosurfacing,
maximum-intensity projectionanddirect volume rendering.

In isosurfacing, a surface is displayed that is the locus of
points where the scalar field equals a certain value. There are
several methods for computing images of such surfaces includ-

2

r(x, y, z)=riso

x = xa + t xb
y = ya + t yb
z = za + t zb

ray equation:

Fig. 2. The ray traverses each cell (left), and when a cell is encountered
that has an isosurface in it (right), an analytic ray-isosurface intersection
computation is performed.

ing constructive approaches such as marching cubes [5], [13]
and ray tracing [10], [15], [25].

In maximum-intensity projection (MIP) each value in the
scalar field is associated with an intensity and the maximum in-
tensity seen through a pixel is projected onto that pixel [21].
This is a “winner-takes-all” algorithm, and thus looks more like
a search algorithm than a traditional volume color/opacity accu-
mulation algorithm.

More traditional direct volume rendering algorithms accumu-
late color and opacity along a line of sight [9], [20], [26], [8],
[4]. This requires more intrinsic computation than MIP.

This paper will address isosurface rendering.

III. T HE ALGORITHM

Our algorithm has three phases: traversing a ray through cells
which do not contain an isosurface, analytically computing the
isosurface when intersecting a voxel containing the isosurface,
shading the resulting intersection point. This process is repeated
for each pixel on the screen. Since each ray is independent,
parallelization is straightforward. An additional benefit is that
adding incremental features to the rendering has only incremen-
tal cost. For example, if one is visualizing multiple isosurfaces
with some of them rendered transparently, the correct composit-
ing order is guaranteed since we traverse the volume in a front-
to-back order along the rays. Additional shading techniques,
such as shadows and specular reflection, can easily be incorpo-
rated for enhanced visual cues. Another benefit is the ability to
exploit texture maps which are much larger than texture memory
(typically up to 64 MBytes).

In the following subsections, we describe the details of our
technique. We first address the ray-isosurface intersection fol-
lowed by a description of various optimizations we have per-
formed to achieve the interactive rates.

A. Ray-Isosurface Intersection

If we assume a regular volume with even grid point spacing
arranged in a rectilinear array, then the ray-isosurface intersec-
tion is straightforward. Analagous simple schemes exist for in-
tersection of tetrahedral cells, but the traversal of such grids is
left for future work. This work will focus on rectilinear data.

To find an intersection (Figure 2), the ray~a + t~b traverses
cells in the volume checking each cell to see if its data range
bounds an isovalue. If it does, an analytic computation is per-
formed to solve for the ray parametert at the intersection with

the isosurface:

�(xa + txb; ya + tyb; za + tzb)� �iso = 0:

When approximating� with a trilinear interpolation between
discrete grid points, this equation will expand to a cubic poly-
nomial int. This cubic can then be solved in closed form to find
the intersections of the ray with the isosurface in that cell. Only
the roots of the polynomial which are contained in the cell are
examined. There may be multiple roots, corresponding to multi-
ple intersection points. In this case, the smallestt (closest to the
eye) is used. There may also be no roots of the polynomial, in
which case the ray misses the isosurface in the cell. The details
of this intersection computation are given in Appendix A.

B. Optimizations

For the traversal of rays through the data, we use the in-
cremental method described by Amanatides and Woo [1]. We
found that traversing the cells is the computational bottleneck
for large datasets, so we include optimizations to accelerate per-
formance.

The first optimization is to improve data cache locality by
organizing the volume into “bricks” that are analogous to the use
of image tiles in image-processing software and other volume
rendering programs [3] (Figure 3). The details of our method
for efficiently indexing cells is discussed in Appendix B. Our
use of lookup tables is particularly similar to that of Sakas et
al. [21].

The second is to use a multi-level spatial hierarchy to acceler-
ate the traversal of empty cells as is shown in Figure 4. Cells are
grouped divided into equal portions, and then a “macrocell” is
created which contains the minimum and maximum data value
for it’s children cells. This is a common variant of standard ray-
grid techniques [2] and the use of minimum/maximum caching
has been shown to be useful [6], [30], [31]. The ray-isosurface
traversal algorithm examines the min and max at each macro-
cell before deciding whether to recursively examine a deeper
level or to proceed to the next cell. The average complexity of
this search will beO(3

p
n) for a three level hierarchy. While

the worst case complexity is stillO(n), it is difficult to imag-
ine an isosurface occuring in practice approaching this worst
case. Using a deeper hierarchy can theoretically reduce the av-
erage case complexity slightly, but also dramatically increases
the storage cost of intermediate levels. We have experimented
with modifying the number of levels in the hierarchy and em-
pirically determined that a tri-level hierarchy (one top-level cell,
two intermediate macrocell levels, and the data cells) is highly
efficient. This optimum may be data dependent and is modifi-
able at program startup. Using a tri-level hierarchy, the storage
overhead is negligible (< 0:5% of the data size). The cell sizes
used in the hierarchy are independent of the brick sizes used for
cache locality in the first optimization.

Since one cannot predicta priori the complexity of extract-
ing an isosurface from a particular screen pixel, we employ a
dynamic load balancing scheme to ensure high processor uti-
lization over a wide range of views. The screen space is first
split into tiles in the image space. In our implementation, tiles
are 32 pixels wide by 4 pixels high. The width of the tile (128

3

1 3

4 5

10 119

6

0 2

7

8

Fig. 3. Cells can be organized into “tiles” or “bricks” in memory to improve
locality. The numbers in the first brick represent layout in memory. Neither
the number of atomic voxels nor the number of bricks need be a power of
two.

Fig. 4. With a two-level hierarchy, rays can skip empty space by traversing
larger cells. A three-level hierarchy is used for the Visible Woman example.

bytes) ensures that tiles will not share a cache line with neigh-
boring tiles. At the beginning of a frame, each tile becomes an
assignment in a queue. Each processor pulls a range of assign-
ments from the queue, performs the assigned work, and then
returns to the queue for more work. The assignments, which
are initially doled out in large chunks, get smaller and smaller
as the frame nears completion. The large granularity in the be-
ginning reduces contention for a large portion of the image, and
the smaller granularity near the end helps to balance the load
efficiently [28].

IV. RESULTS

We applied the ray tracing isosurface extraction to interac-
tively visualize the Visible Woman dataset. The Visible Woman
dataset is available through the National Library of Medicine
as part of its Visible Human Project [18]. We used the com-
puted tomography (CT) data which was acquired in 1mm slices
with varying in-slice resolution. This data is composed of 1734
slices of 512x512 images at 16 bits. The complete dataset is
910MBytes. Rather than down-sample the data with a loss
of resolution, we utilize the full resolution data in our experi-
ments. As previously described, our algorithm has three phases:
traversing a ray through cells which do not contain an isosurface,
analytically computing the isosurface when intersecting a voxel
containing the isosurface, and shading the resulting intersection
point.

Figure 5 shows a ray tracing for two isosurface values. Fig-
ure 6 illustrates how shadows can improve our the accuracy of
our geometric perception. Table I shows the percentages of time
spent in each of these phases, as obtained through the cycle hard-
ware counter in SGI’s speedshop. As can be seen, we achieve

Fig. 5. Ray tracings of the skin and bone isosurfaces of the Visible Woman (see
color page).

Fig. 6. A ray tracing with and without shadows (see color page).

4

Isosurface Traversal Intersec. Shading FPS
Skin (� = 600:5) 55% 22% 23% 7-15

Bone(� = 1224:5) 66% 21% 13% 6-15

TABLE I

Data From Ray Tracing the Visible Woman. The frames-per-second (FPS) gives

the observed range for the interactively generated viewpoints on 64 CPUs.

Fig. 7. Variation in framerate as the viewpoint and isovalue changes.

about 10 frames per second (FPS) interactive rates while render-
ing the full, nearly 1GByte, dataset.

Table II shows the scalability of the algorithm from 1 to 64
processors. View 2 is simpler than view 1, and thus achieves
higher frame rates. Of course, maximum interaction is obtained
with 128 processors, but reasonable interaction can be achieved
with fewer processors. If a smaller number of processors were
available, one could reduce the image size in order to restore the
interactive rates. Efficiencies are 91% and 80% for view 1 and
2 respectively on 128 processors. The reduced efficiency with
larger numbers of processors (> 64) can be explained by load
imbalances and the time required to synchronize processors at
the required frame rate. These efficiencies would be higher for
a larger image.

The interactivity of our system allows exploration of both the
data by interactively changing the isovalue or viewpoint. For
example, one could view the entire skeleton and interactively
zoom in and modify the isovalue to examine the detail in the
toes all at about ten FPS. The variation in framerate is shown in
Figure 7.

Table III shows the improvements which were obtained
through the data bricking and spatial hierarchy optimizations.

View 1 View 2
of processors FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0
2 0.36 2.0 0.79 2.0
4 0.72 4.0 1.58 4.1
8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1
16 2.89 16.1 6.31 16.2
24 4.33 24.1 9.47 24.3
32 5.55 30.8 11.34 29.1
48 8.50 47.2 16.96 43.5
64 10.40 57.8 22.14 56.8
96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

TABLE II

Scalability results for ray tracing the bone isosurface in the visible human. A

512x512 image was generated using a single view of the bone isosurface.

View Initial Bricking Hierarchy+Bricking
skin: front 1.41 1.27 0.53
bone: front 2.35 2.07 0.52
bone: close 3.61 3.52 0.76

bone: from feet 26.1 5.8 0.62

TABLE III

Times in seconds for optimizations for ray tracing the visible human. A

512x512 image was generated on 16 processors using a single view of an

isosurface.

V. DISCUSSION

We contrast applying our algorithm to the Visible Woman
data with previous work done by GE Corporate Research and
Development Center [12]. Table IV shows the time required by
their algorithm. There are two data resolutions reported: the
full resolution and the data strided by 4 in all dimensions. In
that work, the isosurfaces from the Visible Woman data were
extracted using the Marching Cubes algorithm. When the data
was strided by 4 in all dimensions, a total of 494,802 polygons
make up the bone surface. If the Marching Cubes was applied
to the full resolution data, the isosurface requires almost 10 mil-
lion polygons. On a MIPS R10000 running at 190Mhz, the iso-
surface extraction for the down-sampled data took a full 10.07
seconds. This does not include rendering time. Thus, the time
to generate an isosurface is dominated by the geometry extrac-
tion algorithm. Our algorithm can render 64 times more data
(the Visible Woman at full resolution) at roughly 10 frames per
second. For the full resolution isosurfaces, one might expect
a straightforward implementation on the SGI Infinite Reality
graphics accelerator to render the 10M polygons in about ten
seconds. With heavily optimized code it might be possible to
reduce this time to one second at best. Note that we gain effi-
ciency for both the extraction and rendering components by not
explicitly extracting the geometry. Our algorithm is therefore

5

Data Res. Isosurface No. of Triangles Time in Secs.
Full Skin 6,650,596 1335
Full Bone 9,914,122 1218

4x4x4 Skin 503,064 10.04
4x4x4 Bone 494,802 10.06

TABLE IV

Data From GE Work on the Visible Human.

not well-suited for applications that will use the geometry for
non-graphics purposes.

The interactivity of our system allows exploration of both the
data by interactively changing the isovalue or viewpoint. For
example, one could view the entire skeleton and interactively
zoom in and modify the isovalue to examine the detail in the
toes all at about 10 FPS.

The architecture of the parallel machine plays an important
role in the success of this technique. Since any processor can
randomly access the entire dataset, the dataset must be avail-
able to each processor. Nonetheless, there is fairly high locality
in the dataset for any particular processor. As a result, a shared
memory or distributed shared memory machine, such as the SGI
Origin 2000, is ideally suited for this application. The load bal-
ancing mechanism also requires a fine-grained low-latency com-
munication mechanism for synchronizing work assignments and
returning completed image tiles. With an attached Infinite Real-
ity graphics engine, we can display images at high frame rates
without network bottlenecks. We feel that implementing a sim-
ilar technique on a distributed memory machine would be ex-
traordinarily challenging, and would probably not achieve the
same rates without duplicating the dataset on each processor.

VI. FUTURE WORK AND CONCLUSIONS

Since all computation is performed in software, there are
many avenues which deserve exploration. Ray tracers have a
relatively clean software architecture, in which techniques can
be added without interfering with existing techniques, without
re-unrolling large loops, and without complicated state manage-
ment as are characteristic of a typical polygon renderer.

We believe the following possibilities are worth investigating:
� Using an associated color volume as a 3D texture map for an
isosurface.
� Exploration of other hierarchical methods in addition to the
multilevel hierarchy described above.
� Isosurfacing of tetrahedral and hexahedral element grids.
� Combination with other scalar and vector visualization tools,
such as cutting planes, surface maps, streamlines, etc.
� Using higher-order interpolants. Although numerical root
finding would be necessary, the images might be better [15] and
the intersection routine is not the bottleneck so the degradation
in performance could be acceptable.

We have shown that ray tracing can be a practical alterna-
tive to explicit isosurface extraction for very large datasets. As
data sets get larger, and as general purpose processing hardware
becomes more powerful, we expect this to become a very attrac-
tive method for visualizing large scale scalar data both in terms

r000

(x0,y0,z0)
(0,0,0)

r100

(x1,y0,z0)
(1,0,0)

r110

(x1,y1,z0)
(1,1,0)

r111

(x1,y1,z1)
(1,1,1)

r001

(x0,y0,z1)
(0,0,1)

r011

(x0,y1,z1)
(0,1,1)

r101

(x1,y0,z1)
(1,0,1)

x

y
z

r010

(x0,y1,z0)
(0,1,0)

Fig. 8. The geometry for a cell. The bottom coordinates are the(u; v; w)
values for the intermediate point.

(x0, y0)

(x
1
, y1)

a

b

a0

b0

a1

b1

u0

v0

v1

u1

(0, 0)

(1, 1)

(1, 1)

(0, 0)

Fig. 9. Various coordinate systems used for interpolation and intersection.

of speed and rendering accuracy.

VII. A CKNOWLEDGEMENTS

Thanks to Chris Johnson for providing the open collaborative
research environment that allowed this work to happen. This
work was supported by the SGI Visual Supercomputing Center,
the Utah State Centers of Excellence, the Department of Energy
and the National Science Foundation. Special thanks to Jamie
Painter and the Advanced Computing Laboratory at Los Alamos
National Laboratory for access to a 128 processor machine for
final benchmarks.

APPENDIX

I. RAY-ISOSURFACEINTERSECTION

A rectilinear volume is composed of a three dimensional array
of point samples that are aligned to the Cartesian axes and are
equally spaced in a given dimension. A single cell from such a
volume is shown in Figure 8. Other cells can be generated by
exchanging indices(i; j; k) for the zeros and ones in the figure.

The density at a point within the cell is found usingtrilinear
interpolation:

�(u; v; w) = (1� u)(1� v)(1� w)�000 + (1)

(1� u)(1� v)(w)�001 +

(1� u)(v)(1� w)�010 +

(u)(1� v)(1� w)�100 +

(u)(1� v)(w)�101 +

(1� u)(v)(w)�011 +

(u)(v)(1� w)�110 +

(u)(v)(w)�111

6

where

u =
x� x0
x1 � x0

(2)

v =
y � y0
y1 � y0

w =
z � z0
z1 � z0

Note that

1� u =
x1 � x

x1 � x0
(3)

1� v =
y1 � y

y1 � y0

1� w =
z1 � z

z1 � z0

If we redefineu0 = 1 � u andu1 = u, and similar definitions
for v0; v1; w0; w1, then we get:

� =
X

i;j;k=0;1

uivjwk�ijk

For a given point(x; y; z) in the cell, the surface normal is
given by the gradient with respect to(x; y; z):

~N = ~r� =
�
@�

@x
;
@�

@y
;
@�

@z

�

So the normal vector of(Nx; NY ; Nz) = ~r� is

Nx =
X

i;j;k=0;1

(�1)i+1vjwk

x1 � x0
�ijk

Ny =
X

i;j;k=0;1

(�1)j+1uiwk

y1 � y0
�ijk

Nz =
X

i;j;k=0;1

(�1)k+1uivj
z1 � z0

�ijk

Lin and Ching [10] described a method for intersecting a ray
with a trilinear cell. We derive a similar result that is more tai-
lored to our implementation.

See figure 9. Given a ray~p = ~a+ t~b, the intersection with the
isosurface occurs where�(~p) = �iso. We can convert this ray

into coordinates defined by(u0; v0; w0): ~p0 = ~a0 + t~b0 and a
second ray defined by~p1 = ~a1 + t~b1. Here the rays are in the
two coordinate systems (Figure 9):

~a0 = (ua0 ; v
a
0 ; w

a
0) =

�
x1 � xa
x1 � x0

;
y1 � ya
y1 � y0

;
z1 � za
z1 � z0

�
;

and

~b0 = (ub0; v
b
0; w

b
0) =

�
xb

x1 � x0
;

yb
y1 � y0

;
zb

z1 � z0

�
:

These equations are different because~a0 is a location and~b0 is
a direction. The equations are similar for~a1 and~b1:

~a1 = (ua1 ; v
a
1 ; w

a
1) =

�
xa � x0
x1 � x0

;
ya � y0
y1 � y0

;
za � z0
z1 � z0

�
;

and

~b1 = (ub1; v
b
1; w

b
1) =

� �xb
x1 � x0

;
�yb

y1 � y0
;
�zb

z1 � z0

�
:

Note thatt is the same for all three rays. This point can be found
by traversing the cells and doing a brute-force algebraic solution
for t. The intersection with the isosurface�(~p) = �iso occurs
where:

�iso =
X

i;j;k=0;1

�
uai + tubi

� �
vai + tvbi

� �
wa
i + twb

i

�
�ijk

This can be simplified to a cubic polynomial int:

At3 +Bt2 + Ct+D = 0

where
A =

X
i;j;k=0;1

ubiv
b
iw

b
i �ijk

B =
X

i;j;k=0;1

�
uai v

b
iw

b
i + ubiv

a
i w

b
i + ubiv

b
iw

a
i

�
�ijk

C =
X

i;j;k=0;1

�
ubiv

a
i w

a
i + uai v

b
iw

a
i + uai v

a
i w

b
i

�
�ijk

D = ��iso+
X

i;j;k=0;1

uai v
a
i w

a
i �ijk

The solution to a cubic polynomial is discussed the article
by Schwarze [23]. We used his code (available on the web in
severalGraphics Gemsarchive sites) with two modifications:
special cases for quadratic or linear solutions (his code assumes
A is non-zero), and the EQNEPS parameter was set to 1.e-30
which provided for maximum stability for large coefficients.

II. A DDRESSMANAGEMENT FOR BRICKS

Effectively utilizing the cache hierarchy is a crucial task in
designing algorithms for modern architectures. Bricking or 3D
tiling has been a popular method for increasing locality for ray
cast volume rendering. The dataset is reordered inton� n� n
cells which then fill the entire volume. On a machine with 128
byte cache lines, and using 16 bit data values,n is exactly 4.
However, using float (32 bit) datasets,n is closer to 3.

Effective TLB utilization is also becoming a crucial factor
in algorithm performance. The same technique can be used to
improve TLB hit rates by creatingm�m�m bricks ofn�n�n
cells. For example, a40�20�19 volume could be decomposed
into 4�2�2 macrobricks of2�2�2 bricks of5�5�5 cells.
This corresponds tom = 2 andn = 5. Because 19 cannot be
factored bymn = 10, one level of padding is needed. We use
m = 5 for 16 bit datasets, andm = 6 for float datasets.

The resulting offsetq into the data array can be computed for
anyx; y; z triple with the expression:

q = ((x� n)�m)n3m3((Nz � n)�m)((Ny � n)�m) +

((y � n)�m)n3m3((Nz � n)�m) +

((z � n)�m)n3m3 +

((x� n) modm)n3m2 +

((y � n) mod m)n3m+

7

((z � n) modm)n3 +

(x mod n� n)n2 +

(y mod n)� n+

(z mod n)

whereNx, Ny andNz are the respective sizes of the dataset.
This expression contains many integer multiplication, divide

and modulus operations. On modern processors, these opera-
tions are extremely costly (32+ cycles for the MIPS R10000).
For n andm which are powers of two, these operations can
be converted to bitshifts and bitwise logical operations. How-
ever, as noted above the ideal size is not a power of two. Some
of the multiplications can be converted to shift/add operations,
but the divide and modulus operations are more problematic.
The indices could be computed incrementally, but this would re-
quire tracking 9 counters, with numerous comparisons and poor
branch prediction performance.

Note that this expression can be written as:

q = Fx(x) + Fy(y) + Fz(z)

where

Fx(x) = ((x� n)�m)n3m3((Nz � n)�m)((Ny � n)�m) +

((x� n) mod m)n3m2 +

(x mod n� n)n2

Fy(y) = ((y � n)�m)n3m3((Nz � n)�m) +

((y � n) mod m)n3m +

(y mod n)� n

Fz(z) = ((z � n)�m)n3m3 +

((z � n) mod m)n3 +

(z mod n)

We tabulateFx, Fy, andFz and usex, y, andz respectively
to find three offsets in the array. These three values are added to
compute the index into the data array. These tables will consist
of Nx, Ny, andNz elements respectively. The total sizes of the
tables will fit in the primary data cache of the processor even for
very large data set sizes. Using this technique, we note that one
could produce mappings which are much more complex than the
two level bricking described here, although it is not at all obvi-
ous which of these mappings would achieve the highest cache
utilization.

For isosurfacing, each iteration through the loop examines the
eight corners of a cell. In order to find these eight values, we
need to only lookupFx(x), Fx(x+1),Fy(y), Fy(y+1),Fz(z),
andFz(z+1). This consists of six index table lookups for each
eight data value lookups. Lookups for macrocells can be com-
puted in the same way. However, in this case there will be three
table lookups for each macrocell. This, combined with the sig-
nificantly smaller memory footprint of the macrocells made the
effect of bricking the macrocells negligible.

REFERENCES

[1] John Amanatides and Andrew Woo. A fast voxel traversal algorithm for
ray tracing. InEurographics ’87, 1987.

[2] James Arvo and David Kirk. A survey of ray tracing acceleration tech-
niques. In Andrew S. Glassner, editor,An Introduction to Ray Tracing.
Academic Press, San Diego, CA, 1989.

[3] Michael B. Cox and David Ellsworth. Application-controlled demand pag-
ing for Out-of-Core visualization. InProceedings of Visualization ’97,
pages 235–244, October 1997.

[4] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume render-
ing. Computer Graphics, 22(4):65–74, July 1988. ACM Siggraph ’88
Conference Proceedings.

[5] B. Wyvill G. Wyvill, C. McPheeters. Data structures for soft objects.The
Visual Computer, 2:227–234, 1986.

[6] Al Globus. Octree optimization. Technical Report RNR-90-011, NASA
Ames Research Center, July 1990.

[7] James T. Kajiya. An overview and comparison of rendering methods.A
Consumer’s and Developer’s Guide to Image Synthesis, pages 259–263,
1988. ACM Siggraph ’88 Course 12 Notes.

[8] Arie Kaufman.Volume Visualization. IEEE CS Press, 1991.
[9] Mark Levoy. Display of surfaces from volume data.IEEE Computer

Graphics & Applications, 8(3):29–37, 1988.
[10] Chyi-Cheng Lin and Yu-Tai Ching. An efficient volume-rendering algo-

rithm with an analytic approach.The Visual Computer, 12(10):515–526,
1996.

[11] Yarden Livnat and Charles Hansen. View dependent isosurface extraction.
In Proceedings of Visualization ’98, October 1998. This proceedings.

[12] Bill Lorensen. Marching through the visible woman.
http://www.crd.ge.com/cgi-bin/vw.pl, 1997.

[13] William E. Lorensen and Harvey E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm.Computer Graphics, 21(4):163–
169, July 1987. ACM Siggraph ’87 Conference Proceedings.

[14] K.L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh. Parallel Volume
Rendering using Binary-Swap Compositing.IEEE Comput. Graphics and
Appl., 14(4):59–68, July 1993.

[15] Stephen Marschner and Richard Lobb. An evaluation of reconstruction
filters for volume rendering. InProceedings of Visualization ’94, pages
100–107, October 1994.

[16] Michael J. Muuss. Rt and remrt - shared memory parllel and network
distributed ray-tracing programs. InUSENIX: Proceedings of the Fourth
Computer Graphics Workshop, October 1987.

[17] Michael J. Muuss. Towards real-time ray-tracing of combinatorial solid
geometric models. InProceedings of BRL-CAD Symposium, June 1995.

[18] National Library of Medicine (U.S.) Board of Regents. Electronic imag-
ing: Report of the board of regents. u.s. department of health and human
services, public health service, national institutes of health. NIH Publica-
tion 90-2197, 1990.

[19] E. Reinhard, A.G. Chalmers, and F.W. Jansen. Overview of parallel photo-
realistic graphics. InEurographics ’98, 1998.

[20] Paolo Sabella. A rendering algorithm for visualizing 3d scalar fields.Com-
puter Graphics, 22(4):51–58, July 1988. ACM Siggraph ’88 Conference
Proceedings.

[21] Georgios Sakas, Marcus Grimm, and Alexandros Savopoulos. Optimized
maximum intensity projection (MIP). InEurographics Rendering Work-
shop 1995. Eurographics, June 1995.

[22] P. Schröder and Gordon Stoll. Data Parallel Volume Rendering as Line
Drawing. In1992 Workshop on volume Visualization, pages 25–31, 1992.
Boston, October 19-20.

[23] Jochen Schwarze. Cubic and quartic roots. In Andrew Glassner, editor,
Graphics Gems, pages 404–407. Academic Press, San Diego, 1990.

[24] Lisa Sobierajski and Arie Kaufman. Volumetric Ray Tracing.1994 Work-
shop on Volume Visualization, pages 11–18, October 1994.

[25] Milos Sramek. Fast surface rendering from raster data by voxel traver-
sal using chessboard distance. InProceedings of Visualization ’94, pages
188–195, October 1994.

[26] Craig Upson and Micheal Keeler. V-buffer: Visible volume rendering.
Computer Graphics, 22(4):59–64, July 1988. ACM Siggraph ’88 Confer-
ence Proceedings.

[27] Guy Vézina, Peter A. Fletcher, and Philip K. Robertson. Volume Ren-
dering on the MasPar MP-1. In1992 Workshop on volume Visualization,
pages 3–8, 1992. Boston, October 19-20.

[28] Scott Whitman.Multiprocessor Methods for Computer Graphics Render-
ing. Jones and Bartlett Publishers, 1992.

[29] Scott Whitman. A Survey of Parallel Algorithms for Graphics and Visu-
alization. InHigh Performance Computing for Computer Graphics and
Visualization, pages 3–22, 1995. Swansea, July 3–4.

[30] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation. In
1990 Workshop on Volume Visualization, pages 57–62, 1990. San Diego.

[31] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11(3):201–227, July 1992.

