
1

Experiences with the SGI/Cray Origin 2000 256 Processor System
Installed at the NAS Facility of the NASA Ames Research Center

Jens Petersohn and Karl Schilke
NAS Facility NASA Ames Research Center

jkp@nas.nasa.gov
rat@nas.nasa.gov

ABSTRACT: The NAS division of the NASA Ames Research Center installed a 256 processor single
system image Origin 2000 system, the first at a customer site, during the latter half of October 1998. Due to
the large number of processors, the system exhibits different operational characteristics than the smaller
Origin 2000 systems. The causes of the observed behavior are discussed along with progress towards
solving or reducing the effect of problem areas.

Characterizing the Machine

NUMA systems, specifically shared memory
NUMA systems, offer the tantalizing benefits of

both the ability to construct large systems from a
building block system architecture and a common
address space in which software may operate.

Additionally the shared memory NUMA system
seemingly solves the problem of memory buss
contention in true symmetric designs. The SGI
(formerly Silicon Graphics, Inc.) Origin 2000 series
computer, along with the Hewlett-Packard

Exemplar and the soon forthcoming Sun ÒStarfireÓ
system, are the first generation of these NUMA
systems that attempt to exploit the above mentioned
benefits. The dynamics of using these systems,
especially for the larger processing element counts,

from a software/programming and a
system administrative perspective, are
relatively poorly understood.

There are a number of possible designs
that manufacturers may choose to
implement the NUMA philosophy.
These can range from a SMP emulation
to relat ively loosely coupled
architectures. This paper concentrates on
the SGI Origin 2000 system, which is of
interest because it was the first NUMA
design to appear on the market that
provides an SMP like architecture. The
Origin 2000 may in fact be
used/programmed exactly like an SMP

machine, however the fallacy of doing so will be
discussed in more detail.

The Origin 2000 is a shared address space, cache-
coherent, non-uniform memory architecture
machine. The shared address space and cache
coherency bestow the SMP-like appearance on
the system. The term Òshared address spaceÓ
implies that all memory in the system, and
even the I/O address space, is visible from all
other compute elements in the system. The
system even supports the use of Òheadless
nodesÓ, which contain memory but no

processing elements. This configuration is,
however, ill suited for efficient execution of
computationally intensive software in most

cases.
The system is constructed by an assemblage of

nodes, which provide a memory element (32 to
4096 MB) and zero to two processing elements.
The most common processing element at the time

CPU B

L2 CacheL2 Cache

CPU A

Hub
Memory

Directory Memory

XIO

I
n
e
r
f
a
c
e

N
e
t
w
o
r
k

Node

Node Node

Router

Front Panel

Internal

Module
Router

Module

R

R R

R

R

R R

R

R

R R

R

R

R R

R

Simple 32 Processor

System

32 Processor System with

 Express Links

Figure 1 Ð Basic organization of the Origin 2000
computer.

Figure 2 Ð 32 processor systems.

2

of writing is the 250 MHz MIPS R10000 chip. This
chip has a 32 kB data and 32 kB instruction
primary cache, and supports up to a 4 MB
secondary cache, with a cache line size of 64 or 128
bytes. On the Origin 2000, a 128 byte cache line
size is always used. In addition to the processors
and memory element, each node is equipped with a
hub chip and, optionally, external directory
memory. The hub chip mediates access to memory
from the secondary caches on the processing
elements and also provides the network interface
for communicating with other nodes. Note that after
initialization the hub operates independently from
the processing elements on the node. Access to
memory is performed transparently to the CPU by

retrieving the desired memory chunk, which is
always cache line sized, and returning it to the
cache of the requesting CPU. If the hub detects that
the presented physical address falls outside of the
range of addresses assigned to this node, it will

communicate via the Craylink network with the
node that contains the memory and place the result
in the cache of the requesting CPU.

The directory memory, either stored in the main
memory, or for larger systems, in a special
directory memory, marks the ÒownerÓ and modes
of a memory chunk. The directory memory is
managed by the hub chip. When a memory chunk
is loaded into the secondary cache of a processor,
the node on which this processor resides and the
access mode is recorded in the directory memory.
The access mode (shared, exclusive, busy shared,
busy exclusive, waiting) is used to determine the
action required if a second access attempt is made
to the same memory.

The hub chip connects to one of six ports on a
router. A module, which can contain up to four
nodes and two routers, is internally wired to
connect two nodes to each router and the two
routers to each other. (Refer to figure 1.) Thus, no
external cabling is necessary for a single module of

up to eight processors. The remaining three ports on
each router device are accessible via the front panel
for external connections.

The nodes are connected to the router and the
routers to each other via a special type of network
termed the ÒCraylinkÓ interconnect. This network
operates with small variable sized messages which
contain a source and a destination. Tables
established at boot time inside each router
determine the routing through the network. Because
of this, a failure of a link, router or cable, can be
recovered from by rebooting the system. The

R R

R

RR

R

R

R

R R

RR

R

R

R

64 Processor System

MR

MR

MR

MR

MR

MR

MR

128 Processor System
Only one set of connections

MR MR

MR MR

MR MR

MR MR

MR MR

MR MR

MR MR

MR MR

Eight Metarouter
Hypercubes

Eight Processor
Hypercubes

256 Processor System

Figure 3 Ð 64 processor system.

Figure 4 Ð 128 processor system.

Figure 5 Ð 256 processor system.

3

routing through the network could potentially be
modified dynamically, but this is not done at
present.

Routers are connected to each to other in a
hypercube topology with routers forming the
vertices. A full three dimensional hypercube is
formed by eight routers, requiring four modules.
Since each router can be connected (internally in
the module) to two hubs, and each hub contains up
to two processing elements, a full three dimensional
hypercube consists of 32 processors. In this
configuration, five of the six ports on the router are
occupied (three internally in a module and two
externally to interconnect the four modules). The
remaining port is used for larger configurations or
Express Links. Express Links offer additional
connectivity inside a three dimensional or smaller
hypercube by cross-connecting the opposing
vertices. (Refer to figure 2.)

A larger system of 64 processors can be made by
connecting the like vertices of two 32 processor
hypercubes with the last remaining router port in a
four dimensional hypercube. (Refer to figure 3.)

As all ports are exhausted by the 64 processor
system, additional routing devices that are not
connected to hubs, and may use all ports for routing
interconnections, were introduced. To form a 128
processor system these routing devices,
ÒmetaroutersÓ, are used to provide a four way
switch between four 32 processor hypercubes. Four
of the front panel ports on each metarouter are
connected to like vertices of the four processor
hypercubes. In this configuration the metarouters
are not interconnected with each other. (Refer to
figure 4.)

The 256 processor Origin 2000 presents a
departure from these basic configurations. In the
256 processor and larger systems, the metarouters
are themselves interconnected in a hypercube
configuration. Eight full three dimensional
hypercubes are used, for a total of 64 metarouters.
These metarouter hypercubes are not
interconnected with each other. The vertices of the
metarouter hypercube are connected to the same

vertex of each processor hypercube. For example,
each vertex in the metarouter hypercube Òfront top
left cornerÓ is connected the front top left corner of
each processor hypercube. (Refer to figure 5.)

Metarouters have four exposed front panel
connections and two internal connections. For the
256 processor system the four external connections
are used exactly as on a 128 processor system. The
two internal connections may be used to build an
even larger system, but they have not yet been used
in the field.

The complex network geometry of the 256
processing system necessitates the need for an
alternate boot PROM that supports topology
discovery of this complex network. SGI has termed
this PROM the XXL PROM.

Bandwidth and Latency of the Craylink Network

The previous discussion is primarily intended to
familiarize the reader with the architecture in
preparation of this section. In order to understand
the implications of large processor count Origin
2000 systems, it is necessary to understand the
ÒconstructionÓ of those systems.

Although the hardware architecture offers
substantial flexibility, it does not come without
tradeoffs. The Craylink interconnect network used
by these large systems is designed to scale the
cross-section bandwidth linearly with the processor
count, but it does so at the cost of higher latency.

In the most minimal configuration, a network
message must travel through at least one router in
order to reach itÕs nearest neighbor in the network.
A load of a cache line from local memory requires
approximately 485 ns to complete. Each router will
add 50 ns each way to that time. Thus for an eight
processor system, in which the most distant hub
(and thus memory) is two hops away, the additional
delay is only 30% of the total latency and these
small systems provide a reasonably good emulation
of a SMP system. Table 1 shows the worst case hop
count and approximate additional latency for
unowned memory.

4

Processor Count Worst Case Hop
Count

Additional
Latency

Total Latency

Local Memory 0 0 ns 485 ns
4 or Less 1 100 ns 585 ns
5-8 2 200 ns 685 ns
9-16 3 300 ns 785 ns
17-32 4 400 ns 885 ns
33-64 5 500 ns 985 ns
65-128 6 600 ns 1085 ns
129-256 9* 900 ns 1385 ns
9-16 Express Link 2 200 ns 685 ns
17-32 Express Link 3 300 ns 785 ns

*Additional hop count caused by traversing metarouters.
Table 1 Ð Latencies of the Craylink network.

The worst case on a 256 processor system
presents almost threefold increase in latency over a
local memory access. For this reason, viewing the
256 processor system as a large SMP system is
fallacious.

Additionally, there is the possibility for hotspots,
links that are extremely busy because of two high-
traffic activities occurring in different areas of the
machine, to develop. The choice to maximize cross-
section bandwidth does limit this contention in
most cases. There are some simple tools available,
such as linkstat(1), that can be used to monitor
traffic if hotspots are suspected. Should hotspots be
occurring, the above mentioned latencies may
increase.

As previously stated, the latency times presented
are in fact ideal cases, in as much that they assume
that the memory chunk being retrieved is
immediately available for transmission. This is not
always the case. If the element is already ÒownedÓ
by some other hub, that is one of the processors
connected to a hub other than the one requesting the
chunk, then action may have to be initiated to
guarantee coherency of the memory chunk.
Memory chunks are basically categorized into to
ÒcleanÓ and ÒdirtyÓ. A ÒcleanÓ chunk has not been
modified in any cache, thus the contents of all
caches that contain a copy of that chunk match.
Should any owner of a chunk modify itÕs copy of
the chunk, the chunk becomes ÒdirtyÓ and all other
copies must be flushed from all caches that contain
a copy of that chunk. If any hub tries to retrieve the
chunk, the chunk must be ÒcleanedÓ, that is written
back to memory from the owner of the ÒdirtyÓ
copy, before the retrieve access can be completed.
This scenario is frequently termed a Òcache
collisionÓ. This is somewhat of a simplification of
the actual process (and memory ownership

ÒmodesÓ), but suffices for the purposes of this
discussion.

Coarse Mode

Each cache line sized chunk of memory has a 64
bit vector associated with it. These vectors are
stored in the directory memory along with ÒmodeÓ
bits. When a memory chunk is retrieved a bit
corresponding to the hub which retrieved this chunk
is set along with a mode bit to indicate the
disposition of this memory chunk. For larger
systems, those that have more than 64 hubs (nodes),
such as a 256 processor system, the 64 bit vector is
too small to hold all possible hubs. An alternate
operating mode is used which is referred to as
coarse mode, in which eight hubs are represented
by a single bit in the owner vector. As a result,
eight hubs will receive a cache invalidation
message due to a ÒdirtyÓ cache access and cause
action to occur on eight caches, even if they do not
actually contain a copy of the memory chunk in
question. The invalidation request is tested against
the contents of each cache and ignored if that cache
does not contain a copy of the chunk. A response
message is generated by all eight hubs and must be
received and processed by the sender. Thus, access
to a ÒdirtyÓ chunk is considerably slower than
access to a ÒcleanÓ or unowned chunk.

A directory entry for a memory chunk enters
coarse mode if any access to that memory is made
outside of the 64 node piece of the machine that the
memory resides in.

This expanded operating mode supports up to 512
hubs or nodes, for a maximum processor count of
1024. The standard mode addressing scheme used
in the network messages however limits the
maximum node count to 256 since the address field
is eight bits in size.

5

The NAS 256 Processor Origin 2000

The system was installed in late October 1998.
The base components consisting of two 128
processor systems had already been at the site for
several months and operated as two systems. The
metarouter cabinets and cards were delivered a few
weeks prior to the installation of the 256 processor
system.

As this system was constructed from existing
smaller systems, workload requirements dictated
that this system had to be operated similarly to the
smaller systems at NAS and could not be dedicated
to special purpose programs. This implied a highly
varied workload with codes of very variable
quality, especially with respect to the caching
behavior and the amount of communications
required between threads. Additionally, as little
work had been performed on most codes to scale
them to larger systems, and to meet the above
mentioned work load requirements, multiple
programs, jobs, had to be executed simultaneously.
This presented a unique and interesting problem,
both from a management and programming
standpoint.

One of the most notable problems is that most
codes exhibit highly variable runtimes.
Investigation of this and other problems have
pointed out issues in the system software, workload
management and the user/programmerÕs perception
of the system. Each of these will be discussed in
more detail in the following sections.

Operating System Issues

The operating system version that was delivered
with the system in October 1998 was IRIX
6.5.2XXL. This version of the operating system
included special modifications to operate on a
system with more than 64 nodes.

Surprisingly, the stability from both the operating
system and the hardware standpoint has been better
than that of the smaller systems that comprise the
256 processor system. Most of the exceptions
revolve around special features or unusual
operating conditions. The site has been actively
integrating new operating system facilities such as
Miser into the batch management system ÒPortable
Batch SystemÓ (PBS). Unfortunately, until recently,
enabling this capability resulted in operating system
crashes. Another case that reliably crashed the
system is a program that allocates a small memory
on a single node and accesses this memory from
many threads, such as 100 or more. This case will
trigger various hardware bugs in the hubs and

routers and cause the system to hang or crash.
Outside of these two primary causes, there have
been a few unexplained random hangs or crashes,
but not occurring at a frequency were they cause
concern.

As was previously mentioned, one of the major
problems is the variation in execution time on the
system. The primary symptom underlying these
variations is poor memory layout predictability.
Stated another way, the memory used by each
thread is not predictably placed on the primary
node on whose CPU(s) the thread is executing. This
results from both memory placement during
memory commit operations and unpredictable
thread/CPU locality. Threads may execute on
several CPUs, especially during their startup phase
where they are allocating and first touching (and
thus committing) memory. The MLD (Memory
Locality Domain) facility in the kernel is meant to
provide a programmatic interface to the memory
management subsystem for user codes, but it is
non-trivial to use and has not exhibited the desired
robustness in guaranteeing the requested memory
layout. Especially for codes that exhibit only
marginal caching behavior, this is a serious
problem. These issues are being actively pursued
by both SGI and NAS personnel in an attempt to
resolve them as rapidly as possible as they affect all
uses of the system.

The above conditions also result in cross-job
interference problems, even for codes that are
nominally well behaved. Once memory locality is
broken for one job and its memory is obtained from
some other section of the machine, whatever is
executing or will be executing on the remote part of
the machine will be negatively impacted. This is
also true for ill-behaved jobs, namely those which
use more CPU or memory resources than the user
indicated to the batch management system at
submission time. Clearly better controls are
required that allow for ÒhardÓ walls around
individual jobs. Ideally these hard walls would be
dynamically re-configurable, which implies that
they must operate within a single system image.
The Miser facility addresses this partially, but does
not provide sufficient control over the memory
component.

Workload Management

Much of the development effort of the Portable
Batch System was aimed at providing workload
management on homogeneous systems (distributed
or SMP). Different codes have differing
requirements in terms of their ÒconnectivityÓ to
sibling threads inside a given job. Codes that are

6

ported from SMP or vector systems tend to assume
better connectivity than those originating in a
cluster environment. In the ideal case, the batch
management system should consider not only the
amount of resources available, but also the
ÒqualityÓ of the resources. The user would
communicate his or her requirements to the batch
management system which would then attempt to
make intelligent decisions by looking at the
requirements of the codes awaiting execution, and
the ability of the resources to meet these
requirements now and in the future. Clearly this
requires that the user understands the needs of the
code that he/she is using, something that is not
necessarily possible as many users use codes
developed commercially or otherwise externally.

With limited development resources available,
this area has not been addressed, and this deficiency
is also largely masked by other problems.

Existing Codes

Resolving the memory layout issues mentioned
only partially addresses the lack of performance
and runtime variability problems that are observed.

The IRIX operating system considers all
executing ÒnormalÓ threads to be timeshared
threads. This, combined with thread interference
between jobs and unpredictable thread execution
locations, results in highly variable execution rates
of each thread. For instance, if the threads are
forced into synchronous lockstep during their
parallel loop iterations, the performance of the
entire job is dictated by the last straggler thread that
finally arrives at the barrier (explicit or implicit)
that is synchronizing the threads. This has been
frequently identified as a primary cause of scaling
problems in codes that otherwise exhibit almost
perfect behavior and are prime candidates for up-
scaling the number of threads.

Ultimately, this problem needs to be addressed
from the operating system perspective, so that more
reliable loop iteration times can be guaranteed. At
present, however, resolution of this problem
requires reduction of the number of synchronization
events in the code overall or re-distributing the
work (and rewriting parts of the code) so
synchronization is only required between threads in
smaller independently operating groups. A model
that has been applied successfully to this end is the
MLP or multi-level parallelism concept, described
below.

The code must also exhibit reasonably clean
separation of memory objects between threads. If
this is not true, then not only is caching behavior
negatively impacted, but the memory from which

the cache is loaded is more likely to be remote.
Optimally, each thread should perform calculations
within a block of memory that is page aligned and a
multiple of the page size. If that is not the case, at
least one thread will be accessing remote memory
for the overlap page, which is a minor problem for
small pages, but becomes a bigger problem if large
pages are used, which is desirable to produce better
Translation Lookaside Buffer (TLB) behavior.

Most importantly, the pages must also be touched
by the thread that will eventually use them, and not
by some parent or master thread. If memory is first
committed by some parent or master thread, the
individual threads will most definitely not have
these pages local to their execution CPU. Page
migration can theoretically mitigate the resultant
non-locality problem, but it has not yet been proven
of value at NAS. Better thread execution location
stability is required in order to make page migration
effective.

Programming Paradigms

The most frequently used programming
paradigms at NAS are the SGI compiler parallelism
and the Message Passing Interface (MPI) API (SGI
version). The compiler parallelism is implemented
similarly to the compiler parallelism found in the
Cray UNICOS compilers. Because of this, it is
frequently used in a fashion that reflects the Cray
programming paradigm, namely that of small scale
(micro) multi-tasking. There is no inherent
requirement that it be used in this fashion, but as
many codes were ported from Cray vector systems
it is quite often the case. Aside from penalties
associated with setup when entering a parallel
section, and of course the implicit barrier and
cleanup at exit, this programming model in many
cases results in poor understanding of the memory
access patterns by the programmer. This leads to
large numbers of cache collisions and off-node
memory accesses, causing poor scaling behavior on
a large systems with reduced connectivity
compared to smaller systems.

The MPI API does require the programmer to
explicitly transfer the shared data across multiple
threads, but the most frequently used MPI calls
imply barriers since a normal receive operation
does not return until the sender has transmitted the
data and it has been placed into the receiverÕs
memory area. If many blocking MPI calls are
made, especially during tight loops, the implicit
barriers will result in a significant performance
degradation that can be avoided with asynchronous
MPI calls. The cause of this is largely the

7

unpredictable loop iteration times previously
discussed.

Clearly, if used correctly, either model should
work well if the program exhibits good memory
access patterns and minimizes implicit and explicit
barriers. For this to be the case, the programmer
must have substantial awareness of the
characteristics of the machine. A new programming
model that would implicitly enforce these
requirements, while also providing the necessary
low level code to assist the kernel (and ultimately
the batch management system) in guaranteeing
more predictable memory and thread layouts,
would greatly ease the use of the NUMA
architecture as a high performance computing
platform.

For codes based on suitable algorithms, a multi-
level parallelism approach works well. Essentially,
the work performed by the program is broken into
micro- and macro- components. Each macro-
component is processed by a semi-autonomous
group of threads that internally use micro-
multitasking to process that component. If these
groups of threads are laid out on the machine in
such a way as to maximize the connectivity of the
micro-multitasking threads, within one 32
processor hypercube or more ideally only one or
two router hops away, they will operate almost as
well as on a true SMP system. This is especially
true if the micro-multitasked threads exhibit good
caching and TLB behavior. The groups themselves
operate autonomously from each other and only
communicate rarely, such as to synchronize after
the completion of the components by the micro-
multitasked threads.

Unfortunately, this paradigm only works
marginally well in the current batch environment,
since no guarantees are made as to the connectivity
and layout of the assigned nodes/CPUs. MLP is
performed at present by either mixing two
parallelism models (MPI and compiler for example)
or by using operating system services directly to
provide the top level parallelism. Although some of
the necessary code could be packaged into a library,
a more coherent single paradigm for programming
is really needed. As mentioned above, the support
code for such a new programming paradigm can be
developed to interact with the batch management
system and the operating system. This would
provide for a much more robust execution
environment for large thread count applications.
The development of such a programming paradigm
is being investigated by NAS personnel at this time.

Current Projects

The following areas are being actively pursued by
SGI and NAS personnel. A rough estimate of the
time to completion is provided.

Memory and thread placement and stability: This
will insure better thread-to-memory locality. It is
being heavily investigated by SGI personnel in
Eagan and some improvement should be available
in the short term.

Improved separation between unrelated jobs:
Harder walls between unrelated jobs concurrently
executing on the machine are needed. Optimally
this should be dynamically adjustable by the batch
management system. NAS personnel has integrated
Miser CPUset functionality directly into PBS which
will reduce the errant thread interference problem.
Forthcoming fixes from SGI (and in the
intermediate term NAS) for the operating system
will extend that capability to memory as well.

Coherent Resource Management: This is being
looked at to provide a more consistent view of
resources to a batch/workload management system.
SGI and NAS are looking at possible alternatives.
This is a long term project.

ÒQoSÓ Resource Management: As large thread
count codes will have specific requirements for
location/layout on a machine, the batch/workload
management system will need to have some type of
ÒqualityÓ system to insure the application receives
the desired resource layout. Better understanding of
the needs of applications and support from their
multi-tasking method, as well as how to
communicate these requirements to the batch
management system and kernel, is required. This is
also a longer term project.

Multi Level Parallelism: The possibility of
extending MP/OpenMP is being looked at as a
vehicle to provide a programming paradigm for
multi level parallelism. This vehicle could provide
the required support for the ÒQoSÓ resource
management mentioned above.

Closing Remarks

The possibility of very large processing element
count systems based on the NUMA architecture is
certainly an intriguing one, especially in a single
system image environment. There are definite
advantages of such systems. From an application
standpoint the connectivity, both in latency and

8

bandwidth, is a vast improvement over what is
possible in more loosely coupled systems.

The single system image environment certainly
eases the administrative burden and makes
intelligent resource management a much simpler
task.

Once the pressing issues that currently hamper the
usability of the 256 processor Origin 2000 system
have been resolved, and the techniques for
programming for this architecture are better
understood by application programmers, this type
of system will provide an excellent high
performance computing platform for the
computational sciences. In many ways it does
represent a sizable change from the traditional
Òbread and butterÓ Cray vector systems, but the
much lower cost and the performance potential
make the NUMA systems an attractive alternative.

References and Acknowledgments

Much of this information was obtained by
observing the machine and the programs running on
it. Information on the architecture, notably the
messaging system and routers and hubs was
gathered from lengthy conversations with SGI
personnel, particularly Bron Nelson, Scott Emery,
Jim Harrell, and Jack Steiner. Some was obtained
by reading the appropriate design specifications for
the hardware. Most information about the IRIX
operating system was gathered by studying the
source code.

Actual references to the SGI internal documents
may be obtained (by SGI personnel, or with their
permission) by contacting the authors.

