
HOW MODERATE-SIZED RISC-BASED SMPs CAN OUTPERFORM
MUCH LARGER DISTRIBUTED MEMORY MPPs

D. M. Pressel
Corporate Information and Computing Center
U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5067
Email: dmpresse@arl.mil

J. Sahu
Weapons and Materials Research Directorate
U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066
Email: sahu@arl.mil

Walter B. Sturek
Corporate Information and Computing Center
U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5067
Email: sturek@arlmil

K. R. Heavey
Weapons and Materials Research Directorate
U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5066
Email: heavey@arl.mil

ABSTRACT: Historically, comparison of computer systems was based primarily on
theoretical peak performance. Today, based on delivered levels of performance, comparisons
are frequently used. This of course raises a whole host of questions about how to do this.
However, even this approach has a fundamental problem. It assumes that all FLOPS are of
equal value. As long as one is only using either vector or large distributed memory MIMD
MPPs, this is probably a reasonable assumption. However, when comparing the algorithms
of choice used on these two classes of platforms, one frequently finds a significant difference
in the number of FLOPS required to obtain a solution with the desired level of precision.
While troubling, this dichotomy has been largely unavoidable. Recent advances involving
moderate-sized RISC-based SMPs have allowed us to solve this problem. The net result is
that for some problems a 128 processor Origin 2000 can outperform much larger MPPs.

KEYWORDS: Supercomputer, high performance computing, parallel processor, computational fluid dynamics

1 Introduction

For a given job, one can define the Delivered Performance
such that

Delivered Performance = Theoretical Peak Performance *
Total Efficiency

where

Total Efficiency = Algorithmic Efficiency * Serial Efficiency *
Parallel Efficiency.

Traditionally, many researchers using parallel computers
have ignored the question of Algorithmic Efficiency and/or Serial
Efficiency, preferring to stress Parallel Efficiency. A few people
have even gone so far as to assume that all jobs on all machines
have similar levels of efficiency, and therefore, all one needs to
know is the Theoretical Peak Performance for the machines in
question.

Note: This work was made possible through a grant of computer
time by the Department of Defense (DOD) High Performance
Computing Modernization Program. Additionally, it was
funded as part of the Common High Performance Computing
Software Support Initiative administered by the DOD High
Performance Computing Modernization Program.

A direct consequence of this attitude has been the reaction
by many users of vector computers who point out that while the
parallel computers may be delivering higher levels of floating
point operations per second, the vector computers will frequently
have better wall clock time. Even when one takes into account
the relative costs of the machines, an important consideration in
throughput oriented environments, the vector machines will
frequently fare much better than the raw numbers might indicate.
Based on these observations, it is clear that one needs to
consider Algorithmic Efficiency and Serial Efficiency as well as
Parallel Efficiency when evaluating projects that use parallel
computers.

When one compares the architectures of Cray vector
computers (e.g., the C90), traditional MPPs (e.g., the Cray T3E
or the IBM SP), and RISC*-based SMPs (e.g., the SGI Origin
2000 or the SUN HPCÊ10000), one finds significant differences
in the design principles on which these systems are based. The
Cray vector computers have vector processors, a low latency very
high bandwidth memory system, and make very few
assumptions about data locality or data reuse. In fact, the very
nature of their design tends to discourage attempts to tune for
data locality or reuse.

Traditional MPPs have an intermediate level of memory
latency and bandwidth. Most of these systems now use RISC

* Definitions for boldface text can be found in the glossary.

processors with moderate-sized caches and some design features
that facilitate streaming data into and out of the processor.
Experiments reported by the NAS group at NASA Ames and an
analysis performed by David OÕNeal and John Urbanic at the
Pittsburgh Supercomputing Center indicate that the memory
system limitations on these systems result in a lower level of
efficiency than with comparable codes running on the Cray vector
machines (Saini 1996, 1997; OÕNeal and Urbanic 1997).

RISC-based SMPs tend to have longer memory latencies
and somewhat lower memory bandwidth than the MPPs. In
general, they also have no special features designed to facilitate
the streaming of data into and out of the processor. On the other
hand, they are usually equipped with at least 1ÊMB of cache per
processor. Codes that have been tuned to take advantage of this
cache can in many cases reduce the rate of cache misses, that
miss all the way back to main memory, to less than 1%. As a
result, for some codes, it is possible to achieve serial levels of
performance that actually exceed the performance achieved on
MPPs (both in terms of absolute single processor performance
and in terms of the percentage of peak). However, the serial
performance for codes that were only tuned to run on an MPP
may fall short of what is normally seen on an MPP (Sahu et al.
1997, 1998).

From this discussion, it should be clear that different classes
of machines are likely to deliver different percentages of peak
performance. Furthermore, the delivered level of performance is
likely to strongly depend on the quality of the tuning (this
includes the vector machines, since there are a lot of tricks to
producing good vectorizable code). Finally, the ability to
deliver well-tuned code will frequently depend on the design of
the hardware itself.

For the rest of the discussion, it will be assumed that the
codes are well tuned for serial performance and that the serial
performance achievable with the MIPS R10K, HP PA-8000,
Alpha 21164 (as configured for the T3E), and the IBM P2SC are
all comparable. This means that in terms of efficiency, the
MIPS R10K and the IBM P2SC have a significant lead over the
other two chips (this agrees with published results as well as
information that the author has received in private briefings). It
is also assumed that the achievable serial efficiency of the MIPS
R10K and the IBM P2SC approaches and, in some cases,
matches that seen on Cray vector machines.*

The remainder of this paper will focus on parallel efficiency
and algorithmic efficiency, with most of the emphasis being on
the latter. The assumption here is that in many cases one can
produce parallel efficiencies that are close to 100%.

* To a first approximation, the preceding assumptions seem to be

nearly independent of the processor speeds in question. This
probably means that each of these designs is strongly limited by
the performance of the memory system and/or other system
components.

 In situations where this is not likely to be the case, some
discussion will be made of what the predicted behavior is.

This leaves the question of what the algorithmic efficiency
is. While it is hard to identify what one means by an
algorithmic efficiency of 100%, it is generally easy to define the
relative algorithmic efficiency of two approaches by comparing
the number of floating point operations required to achieve a
solution.à

The important point here is that many parallelized programs
have a significantly lower algorithmic efficiency than do the
programs normally run on serial/vector processors. Evidence
will be given that it is in some cases now possible to avoid this
degradation. The down side is that the approaches that lead to
this conclusion are in many cases not highly scalable. In some
cases, they may work on a range of SMPs and MPPs, while in
other cases, they will only work on SMPs. However, even with
these limitations, it is possible that these techniques will allow
the performance of a 64Ð128 processor job to equal or exceed the
performance of a job using a 512 processor MPP written using
traditional techniques.

2 Delivered Performance

If one asks most users of computer equipment what job
characteristics they consider to be important, the general replies
seem to center on two themes:

(1) The accuracy of the results.¤

(2) The time to completion.**

While, in general, one assumes that these two themes are
independent, in reality, that has rarely been the case. In a
resource-constrained environment, it is easy to see how the
sophistication of the calculations that one can reasonably hope to
carry out will be limited. What may be less obvious is that
there are other ways in which the search for a rapid time to
completion can adversely affect the accuracy of the results.

A common problem, which comes from the field of
Computational Fluid Dynamics (CFD), is that, frequently, the
most efficient serial or vectorizable algorithm uses what is

à Ideally, this comparison should be made on a single machine, even

if the different algorithms are not normally all used on the same
machine. This way, one is measuring differences in the algorithms,
not in the compilers. However, even here, it is important that if
operations are normally performed N times, where N is the number
of processors, then if one is comparing using three different
algorithms, one to be run on a vector machine with 16 processors,
one on an SMP with 100 processors, and one on an MPP with
500 processors, then the operation counts should reflect the
intended usage.

¤ In general, this is a relative concept and refers to the accuracy
conforming to the expectations for a particular run.

** This may either apply to the time required to run a single job or the
time required to run a complete set of jobs. In the former case, one
is usually limited to using some or all of a single computer. In the
latter case, one is usually limited to using some or all of the
resources at one or a small number of computer centers.

known as an Implicit approach to solving the Navier-Stokes
equations. Unfortunately, such an approach has generally
resisted attempts to parallelize it. An example of this problem
can be found in the F3D code out of NASA Ames Research
Center, which uses a block tridiagonal solver based on Gaussian
Elimination. Due to dependencies in this part of the code, even
though this solver handles three-dimensional problems, each of
the sweeps through the data can only be parallelized in a single
direction. In the past, three methods have been used to get
around this problem:

(1) In theory, one can replace Gaussian Elimination with a
more parallelizable algorithm such as cyclic reduction.
Unfortunately, this approach can itself result in two
major problems:

¥ It increases the operation count by a factor of
LOG2(N), where N is the number of processors being
used. Clearly, this has the effect of decreasing the
algorithmic efficiency.*

¥ Since this algorithm requires the use of a large
number of relatively small messages, it was much
better suited for use on SIMD (Flynn 1972)
machines than for use with todayÕs MIMD (Flynn
1972) machines.

(2) One can use an entirely different algorithm, such as one
of the Explicit algorithms, which are known to be
highly parallelizable. Unfortunately, the use of these
algorithms will, in general, substantially increase the
operation count required to obtain a solution. In other
words, once again, the algorithmic efficiency suffers.

(3) Alternatively, one can use domain decomposition as
the basis for parallelization. Unfortunately, this
approach can severely compromise the convergence
behavior of the algorithm. A number of approaches
have been suggested to deal with this problem, but in
all cases, the algorithmic efficiency will to some degree
suffer (Wang and TaftiÊ1997; Singh, Uthup, and
Ravishanker, date unknown).

The key point here is that:

Delivered Performance = Theoretical Peak Performance *
Total Efficiency,

where

Total Efficiency = Algorithmic Efficiency * Serial Efficiency *
Parallel Efficiency.

* Using 512 processors will increase the operation count for this

part of the solver by a factor of 9.
 Many of these approaches will also limit the available parallelism

and/or adversely affect the parallel efficiency.

Therefore, any changes that result in a decrease in the
Algorithmic Efficiency will directly affect the Delivered
Performance, even though the performance as measured by
MFLOPS might be quite high.à Using this unit, Delivered
Performance is inversely proportional to the Time to
Completion for a job (assuming that the processors are dedicated
to this job).

Figure 1 shows an example of this for a fixed-size problem
when one attempts to scale to large numbers of processors. Two
things that are important to note here are:

NUMBER OF PROCESSORS USED

S
P

E
E

D
U

P
 R

E
LA

T
IV

E
 T

O
 O

N
E

 P
R

O
C

E
S

S
O

R

O
N

 T
H

E
 P

A
R

A
LL

E
L

C
O

M
P

U
T

E
R

IDEAL LINEAR SPEEDUP

AMDAHL’S LAW

AMDAHL’S LAW + COMM. COSTS

AMDAHL’S LAW + COMM. COSTS + LESS EFFICIENT ALGORITHM

TYPICAL HIGH PERFORMANCE VECTOR PROCESSORS

Figure 1. Predicted speedup from the parallelization of a
problem with a fixed problem size.

(1) For sufficiently large numbers of processors, the
combined effects of AmdahlÕs Law and the costs of
interprocessor communication will limit the maximum
achievable level of performance. Therefore, for all but
the largest problem sizes, and given enough processors,
the parallel efficiency may be far less than 100%.

(2) The effect of going to less efficient algorithms in an
attempt to improve the parallelizability of the code can
virtually eliminate the perceived benefits of having a
highly parallelizable code.

If one applies GustafsonÕs (1988) concept of scaled speedup,
one can overcome some if not all of the limiting effects
attributable to AmdahlÕs Law and interprocessor
communication. However, this concept will have little impact
on the loss of algorithmic efficiency. Therefore, the basic
premise behind Figure 1 (and this paper) remains intact.

3 Loop-Level Parallelism

à The units for Delivered Performance are Useful MFLOPS.

It turns out that there is an alternative way in which one can
parallelize Implicit CFD codes, which does not result in a
reduction of their Algorithmic Efficiency. This approach is
based on parallelizing the individual loops and is therefore
referred to as Loop-Level Parallelism. Of course, if this method
is so great, then one might wonder why it was not the method
of choice all along. The following are some of the reasons for
this:

¥ Loop-Level Parallelism in general is based on the same
parallelism used to produce vector code. Therefore if the
program is to run in parallel on a vector computer such as
the Cray C90, it will be difficult to produce a code that
exhibits both good vector performance and good parallel
performance at the same time.

¥ While in theory it is possible to implement Loop-Level
Parallelism using some form of message-passing code, the
result can be a huge number of calls to the
message-passing library (either to implement matrix
transpose operations and/or to manually implement some
form of coherency protocol). By comparison, when Loop-
Level Parallelism is implemented on a shared memory
system, it is not uncommon to leave the loops in the
boundary condition routines unparallelized (in general,
these loops may represent 80% or more of the loops in
the program, but less than 1% of the total work). This
makes it both painful to implement Loop-Level
Parallelism using message-passing code and, in general,
results in code that is very inefficient.

¥ Traditionally, there have been two types of shared
memory platforms. The first type is based on a small
number of vector processors. This tends to make the
system very expensive, while limiting oneÕs ability to
show good speedup. As a result, many codes run on
vector processors were never parallelized. The second
type of system was based on inexpensive mass-market
microprocessors. Unfortunately, until recently, the
aggregate peak speed of systems based on this design was
generally much less than the peak speed of one processor
on a state-of-the-art vector machine from Cray Research.

Therefore, until recently, none of the machines commonly
used for High Performance Computing were well suited for use
with Loop-Level Parallelism. It was not until the advent of the
SGI Power Challenge that one could make a clear case for
investigating this approach. Even then, enough people equated
Loop-Level Parallelism with Automatic Parallelization (a
concept that doesnÕt work very well) that they failed to properly
appreciate the potential for this approach (Theys, Braun, and
Siegel 1998). In fact, even now there are only a few systems
(e.g., the SGI Origin 2000) for which a compelling case can be
made (in some cases, the bottleneck is the hardware, while in
other cases, limitations in the operating system and/or the
compilers are at fault).

Table 1 shows the potential benefit of using Loop-Level
Parallelism in conjunction with a well-designed shared memory
system. Table 2 shows the actual speedup that was achieved for
different problem sizes when using Loop-Level Parallelism with
an SGI Origin 2000 to run the F3D code for a common test case.

Table 1. The No. of Processors Required to Achieve a
Specified Level of Delivered Performance Using
Traditional Techniques

Minimum No. of Processors Required When UsingSpeedup Relative
to One Processor Domain Decomposition Cyclic Reduction

16 64 108
32 181 256
48 333 418
64 512 589
80 716 767

4 Speedup

Up until now, this discussion has assumed that one can
easily achieve linear speedup. In reality, this is frequently not
the case. Therefore, let us consider what is likely to be the case
when using both the traditional approaches to parallelization and
loop level parallelism. Based on the numbers in Table 1, it is
clear that when using traditional approaches, one will likely need
a large number of processors. However, for fixed-size problems,
AmdahlÕs Law predicts that there is enough serial code
remaining that one will asymptotically approach a maximum
level of performance when using large numbers of processors.
The traditional counter argument has been to use the concept of
scaled speedup (Gustafson 1988). With this concept, the
available parallelism and the available work are assumed to scale
linearly with the problem size. Therefore, as the problem size
gets bigger, one can use additional processors while keeping the
run time constant. This concept also assumes that the amount
of work associated with the serial code grows very slowly, if at
all, and can therefore be ignored.

A common rule of thumb when parallelizing programs on
distributed memory MPPs is that one should use the smallest
number of processors possible, with the amount of memory per
processor usually being the limiting factor. Most modern MPPs
are now equipped with between 64 MB and 1 GB of memory per
processor, with somewhere around 10Ð20 MB of memory per
processor reserved for use by the operating system. Based on
these

Table 2. The Speedup Achieved When Using the F3D Code
Parallelized Using Loop-Level Parallelism on SGI
Origin 2000Õs

No. of Processors
Used

Grid Size
(Millions of Grid Points)

Speedup Relative
to One Processor

23 1.00 16.8
23 3.00 16.3
21 6.00 16.1
20 12.0 16.4

20 23.8 17.0
21 59.4 18.1
21 124.0 17.6
85 1.0 32.4
81 3.0 32.2
55 6.0 32.1
46 12.0 33.0
45 23.8 32.1
41 59.4 33.1
41 124.0 32.8
114 12.0 48.1
87 23.8 49.8
61 59.4 48.1
61 124.0 48.6
117 59.4 66.9
88 124.0 65.7
116 124.0 81.4

Note: Except for the largest test case, runs using fewer than 64 processors
were run on either 32 or 64 processor Origin 2000Õs. Due to the
memory requirements of the largest test case, all runs were made on a
128 processor Origin 2000. For all of the remaining cases, runs were
made on a preproduction 128 processor Origin 2000.

numbers, Table 3 shows how many processors one would
normally expect to use for the test cases mentioned in Table 2.

Table 3. The No. of Processors That One Would
Normally Use When Using an MPP and Traditional
Techniques to Process the Test Cases

Grid Size
(Millions of Grid Points)

Recommended No. of Processors

1.0 1Ð10
3.0 2Ð30
6.0 3Ð60
12.0 6Ð120
23.8 12Ð240
59.4 30Ð600
124.0 62Ð1,240

There is no guarantee that one will actually get good
scalability all the way to the upper bounds listed in Table 3.
Rather, the upper bound is based on the impossibility of running
the job if there is not enough memory. However, the rule of
thumb indicates that it is questionable if one will see linear
speedup when using even larger numbers of processors.

When comparing Tables 1 and 3, it becomes apparent that
there are some problems. The smaller test cases are unlikely to
produce speedups much in excess of a factor of 16. While in
theory the larger problem sizes will fare better, there is a second,
less obvious problem. Very few of the currently installed MPPs
are configured with 512 or more processors. Therefore, in many
cases, one will find it difficult, if not impossible, to use enough
processors to get speedups of 64 or greater.

Turning our attention to programs parallelized using Loop-
Level Parallelism, the following question comes up: What
kinds of speedup is one likely to see from these programs? The
answer here is a bit complicated. In general, the available

parallelism will be a function of the smallest of the grid
dimensions. Therefore, the available parallelism will, at best,
scale as the cube root of the size of each zone. A direct result of
this is that it no longer makes sense to talk about scaled
speedup. Instead, one is back at the problem of obtaining
speedup for a fixed problem size.

The second problem is that when using Loop-Level
Parallelism, the available parallelism is frequently within an
order of magnitude of the number of processors being used.
Since there are an integer number of iterations in a loop, the
predicted speedup is no longer linear, but rather is a stairstep.

Figure 2 and Table 4 show an example of this. This also
means that, for smaller problems, one may run out of parallelism
in some/or all of the loops prior to using all of the processors in
the machine.

5 10 15

5

10

15

NUMBER OF PROCESSORS USED

S
P

E
E

D
U

P

Figure 2. Predicted speedup for a loop with 15 units of
parallelism.

Table 4. Predicted speedup for a loop with 15 units of
parallelism

No. of
Processors

Maximum Units of Parallelism
Assigned to a Single Processor

Predicted Speedup

1 15 1.000
2 8 1.875
3 5 3.000
4 4 3.750
5Ð7 3 5.000
8Ð14 2 7.500
15 1 15.000

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000
Cray C90

SGI Origin 2000 (32 processor system)

SGI Origin 200 (4 processor system)

SGI Origin 2000 (64 processor system)

Predicted performance

SGI Origin 2000 (128 processor system)

(preproduction hardware and operating system)

S
P

E
E

D
 IN

 T
IM

E
 S

T
E

P
S

 P
E

R
 H

O
U

R

NUMBER OF PROCESSORS USED

Figure 3. Performance results for the one-million-grid-point data set.

An additional complication with Loop-Level Parallelism is
that since many of the loops will be doing very little work, the
overhead associated with parallelizing them may be so great as
to result in Parallel Slowdown! This situation is especially
common in the boundary condition routines. While in theory
this problem should be less severe when dealing with larger
problem sizes, the reality of the situation is that the code will
normally be tuned for the smaller problem sizes. While in many
cases it should be possible to reduce the amount of CPU time
spent on serial code to 1% or less of the total CPU time, this is
enough for AmdahlÕs Law to be a problem when using more
than about 50 processors. The combination of the stairstepping
with AmdahlÕs law explains why the smaller test cases show
limited speedup in Table 2.*

Figures 3 and 4 show all of these effects in a real problem.
Figure 3 is for a relatively small problem (less than 500 MB of
memory), while Figure 4 is for a relatively large problem (over
20ÊGB of memory). Our calculations indicate that the primary

* A third reason for the limited speedup is that the average memory
latency on the 128 processor Origin 2000 is slightly longer than
on the 32 and 64 processor systems. This has the effect of
decreasing the serial efficiency from 30 to 40% to about 25Ð30%
on the 128 processor system.

reason for the difference between the predicted and measured
levels of performance in these curves is AmdahlÕs law.

The combination of Loop-Level Parallelism and RISC-based
SMPs has been shown to be a promising approach to
parallelizing a class of highly efficient algorithms that had
previously resisted attempts at parallelization. Additionally,
evidence has been presented that demonstrates that, in general,
the resulting code achieves a much higher level of delivered
performance than traditional techniques might be expected to
deliver. While it is not practical to look at all possible
approaches in detail and to determine what their effect is on the
Total Efficiency in all cases, it seems likely that the benefits of
using our approach are real.

 The predicted curve is based on the assumption that one can
achieve the same percentage of peak performance for a single
processor job on both the Cray C90 and on RISC-based machines
such as the SGI Origin 2000. This does not mean that one will
achieve this without any work. Rather, it is assumed that a
significant effort at tuning the code was made on both platforms.
Taking into account only the available level of parallelism (the
stairstepping effect), this expected level of performance is then
extraploted out for multiprocessor runs. As such, the predicted
level of performance will, in general, equal or exceed the observed
level of performance and serve as an excellent reference point for
determing how well the system is performing.

0 20 40 60 80 100 120
0

50

100

150

200

NUMBER OF PROCESSORS USED

S
P

E
E

D
 IN

 T
IM

E
 S

T
E

P
S

 P
E

R
 H

O
U

R
Predicted performance

Cray C90
SGI Origin 2000 (64 processor system)

SGI Origin 2000 (128 processor system)

(preproduction hardware and

operating system)

Figure 4. Performance results for the 59-million-grid-point data set.

5 Conclusions

An additional consideration is the availability of the
hardware. SGI and SUN have both been quite successful at
selling moderate-sized RISC-based SMPs. While IBM and
Cray (a subsidiary of SGI) have sold a significant number of
MPPs, very few of them had 512 or more processors. Therefore,
even when in theory the performance of a large MPP using
traditional methods should exceed our results, it is far from
certain that one will actually be able to obtain access to enough
processors in a single machine at one time.

6 References

Flynn, M. J. Some Computer Organizations and Their
Effectiveness. IEEE Transactions Computers, C-21 948-60,
1972.

Gustafson, J. L. Reevaluating AmdahlÕs Law.
Communications of the ACM, vol.Ê31, no.Ê5, pp.Ê532Ð533, The
Association for Computing Machinery, Inc., May 1988.

OÕNeal, D., and J. Urbanic. On Performance and Efficiency:
Cray Architectures. Parallel Applications Group Pittsburgh
Supercomputing Center, Electronically published at
http://www.psc.edu/~oneal/eff/eff.html, August 1997.

Sahu, J., D. M. Pressel, K. R. Heavey, and C. J. Nietubicz.
Parallel Application of a Navier-Stokes Solver for Projectile
Aerodynamics. Published in Parallel Computational Fluid
Dynamics, Recent Developments and Advances Using Parallel
Computers. Proceedings of the Parallel CFDÕ97 Conference
Manchester, U.K., 19Ð21ÊMayÊ1997. Edited by D.ÊR.ÊEmerson,
J.ÊPeriaux, A.ÊEcer, N.ÊSatofuka, and P.ÊFox, Amsterdam:
Elsevier, 1998.

Sahu, J., D. M. Pressel, K. R. Heavey, and C. J. Nietubicz.
Parallel Application of a Navier-Stokes Solver for Projectile
Aerodynamics. To be published in the proceedings of the 1998
Army Science Conference.

Saini, S. (ed.). NAS Parallel Benchmarks, NPB 1 Data.
Electronically published at http://Science.nas.nasa.gov/
Software/NPB/NPB1Results/index.html, 17ÊNovemberÊ1996.

Saini, S. (ed). NAS Parallel Benchmarks, NPB 2 Data.
Electronically published at http://Science.nas.nasa.gov/
Software/NPB/NPB2Results/index.html, 17ÊNovemberÊ1997.

Singh, K. P., Biju Uthup, and Laxmi Ravishanker.
Parallelization of Euler and N-S Code on 32 Node Parallel Super
Computer PACE+. Presented at the ADA/DRDO-DERA
Workshop on CFD, date unknown.
Theys, M. D., T. D. Braun, and H. J. Siegel. Widespread
Acceptance of General-Purpose, Large-Scale Parallel Machines:
Fact, Future, or Fantasy? IEEE Concurrency Parallel,

Distributed and Mobile Computing, published by the IEEE
Computer Society, JanuaryÐMarch 1998 issue.

Wang, G., and D. K. Tafti. Performance Enhancement on
Microprocessors With Hierarchical Memory Systems for Solving
Large Sparse Linear Systems. Submitted to the International
Journal of Supercomputing Applications, February 1997.

GLOSSARY

RISC: Reduced Instruction Set Computer.

SIMD: Single Instruction Multiple Data - A class of parallel
computers as defined in FlynnÕs taxonomy.

SMP: Symmetric Multiprocessor - A term normally only
applied to shared memory systems using hardware memory
coherency protocols.

MIMD: Multiple Instruction Multiple Data - A class of parallel
computers as defined in FlynnÕs taxonomy.

Domain decomposition: The process of splitting a small
number of zones (some of which are assumed to be large) into a
moderate to large number of zones (generally all of which are
fairly small in size).

MFLOPS: Million Floating Point Operations Per Second.

MPP: Massively Parallel Processor.

