
Performance Metrics for Parallel Systems

D. M. Pressel
Corporate Information and Computing Center

U.S. Army Research Laboratory
Aberdeen Proving Ground, Maryland 21005-5067

Email:  dmpresse@arl.mil

ABSTRACT: One frequently needs to compare the performance of two or more parallel computers;
but how should this be done?  The most straightforward way to do this would be to rely upon a suite
of benchmarks.  Unfortunately, there are many problems and limitations with this approach.  Therefore,
one is frequently forced to rely upon a combination of approaches.  Unfortunately, many of the
alternative approaches are all to frequently based on excessively simplistic approximations and
extrapolations.  This paper will discuss some of these issues so that the problems they can cause may
be avoided in the future.
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1 Introduction

It is frequently necessary to compare the performance of
two or more parallel computers.  While in theory this might
seem like a simple enough proposition, the reality is that it is
far from being simple.  Let us assume that the most logical
approach is to rely upon a suite of benchmarks based on the
expected work load.  How should the benchmarks be selected?  
We already said that they were to be based on the expected
work load, but what does this mean?  Some sites have very
steady work loads that slowly evolve over time; however
many sites will see significant variations in the work load
from month to month.  Additionally, most sites have a
collection of jobs that they would like to run, but which either
cannot be run on their current systems, or at best can only be
run as a demo run in dedicated mode.

Continuing to look at this problem in greater depth, two
additional problems come to mind:

(1)  The benchmark suite has to be runable on the
available benchmarking hardware.  In other words, while most
vendors have one or more systems that they use for running
benchmarks, in general, these systems are not maxed-out
configurations.  Furthermore, there is competition for these
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systems, so in general, there will be some reluctance on the
part of the vendors to run benchmark suites that take more
than a few days to run.  This point becomes even more
important if the suite needs to be run more than once (e.g., to
judge the effectiveness of tuning the code and/or the hardware
configuration).  This may make it particularly difficult to
benchmark extremely large, and presumably highly scalable,
jobs to see if the largest configurations perform as promised.

(2)  What should the benchmark code look like?  If one
supplies source code and rules concerning what can be done to
it, that very action can adversely impact the performance of the
code on some systems.  For example:
        

 ¥ Vector optimized code will, in general, perform
suboptimally on RISC-based platforms.

               
¥ Code that has already been parallelized might have been

done so based on certain assumptions about the
computer's architecture.  For example, it might have
been written in CM-Fortran and targeted at the CM-5
made by Thinking Machines.  Such a program can in
theory be transformed into HPF.  In theory, such a
program is highly portable.  The reality can be quite
different, and even when the program is "portable," this
says nothing about its performance or cost effectiveness.

¥ Even if message-passing code that has been run on an
early RISC-based system (e.g., the Intel Paragon) is
supplied, the tuning of the code may be suboptimal.
For example, it might have assumed that 1Ð10
MFLOPS were good.  Given a peak-per-processor
interprocessor communication rate of 100 MB/s, this is
likely to result in a favorable ratio between



communication and computation.  However, if one
switches to a processor where the expected performance
is in the range of 50Ð200 MFLOPS, then it is unlikely
that the ratio between communication and computation
will still be as favorable.  In particular, the latency of
interprocessor communication is likely to be much
more important.

The Numerical Aerodynamic Simulation (NAS) group at
NASA Ames Research Center came up with an alternative
approach.  Version 1 of the NAS Parallel Benchmarks (NPB1)
was based on paper and pencil descriptions of the algorithms.
It was up to each vendor to write their own code from scratch
and to optimize in almost any way they saw fit.  The only
requirements were that they could not change the algorithm
and that the results had to pass certain tests.  While this
approach has the decided advantage of allowing the vendors to
show off their wares in the most favorable light possible, it
turned out that in many cases this light was much too
favorable.

         One final note on this topic is that so far we have been
requiring the vendor to use a specific algorithm.  The problem
is that not only is vector optimized code suboptimal for
RISC- based architectures but it may also be difficult to
parallelize.  In particular, it may have a limited amount of
available parallelism.  For this and other reasons, there may be
a strong benefit to using a combination of Loop-Level
Parallelism and Shared Memory SMPs when trying to
parallelize such a code.  On the other hand, if one sticks to
algorithms that are known to perform well on current MPPs,
one may be accepting a significant decrease in the algorithmic
efficiency and, therefore, the delivered performance.  Such a hit
may be unavoidable if one is committed to using MPPs;
however, these considerations demonstrate why it can be easy
to underestimate the value of a Shared Memory SMP such as
the SGI Origin 2000.

The rest of the paper will discuss some commonly used
metrics that are frequently used to supplement, or even replace,
benchmarking as the basis for procurement decisions.

2 Reviewing the Metrics

When discussing metrics for any form of High
Performance Computing with the user community, four
metrics are commonly mentioned:*

(1) Does the machine have enough (usable) memory to
run my job?

                                                
* ÒProgrammers should always look for the best available algorithm

(parallel or not) before trying to scale up the ÔwrongÕ algorithm.  For folks
other than computer scientists, time to solution is more important than linear
speedup [1].Ó

(2) How long will it take for my job to run?

(3) What is the overall turnaround time for the job?

(4) Can I use my favorite algorithm on the new
computer?

The first metric is, in general, fairly simple to evaluate.
Either the machine has enough memory, or it doesnÕt (and one
would have to use an out-of-core solver).  In reality, things can
be a bit more complicated since some combinations of
computer architecture and software will result in some or all of
the data being replicated up to N times, where N is the
number of processors being used.  Additionally, some
architectures will favor the use of additional arrays (possibly
for scratch purposes, or alternatively to hold the transpose of
another array), which can also increase the memory
requirements.  Even so, it is, in general, fairly simple to
predict if a job will fit in the memory of a certain machine. 

The second metric is the one that seems to be most
frequently discussed by the software developers, although it is
this authorÕs experience that most users are most interested in
the third metric.  Sections 3 and 4 will discuss these metrics
in greater detail.

The author is presenting a separate paper devoted to the
fourth metric at this conference [2].  Therefore, this metric will
not be discussed in great detail.  The important point of the
fourth metric is that some algorithms are easier to port to
some system architectures than others.  In particular, some of
the most efficient serial algorithms are relatively easy to port
to vector-based and/or Shared Memory SMPs.  At the same
time, they can be much more difficult to port to traditional
Distributed Memory MPPs.  As such, the choice of hardware
can in some cases limit the choice of algorithm and in so
doing negatively impact the observed results for the second
and third metric.

3 How Long Will It Take for My Job to Run?

While the second metric discusses the run time for a
complete job, rarely will one see presentations based on run
time for the complete job.  While there are several reasons for
this, the most common is that it takes too much computer
time to obtain fully converged solutions.  This is especially
the case if one wishes to use this metric to measure
performance as a function of the number of processors used.

                                                
  It is important to keep in mind that on a distributed memory architecture,

the memory requirement will frequently set the lower bound on the number
of processors that can be used for a certain job.  Historically, distributed
memory architectures were configured with limited amounts of memory
per processor.  As a result, one was sometimes forced to use more
processors than were optimal for a particular job, just to have enough
memory to run that job at all.  While this is in general less of an issue today
than in the past (i.e., some distributed memory systems are now equipped
with 1 GB of memory per processor), the issue has not gone away entirely
(e.g., as late as 1996, the default configuration for the Cray T3E was 64
MB per processor) [3][4].



For simulations that have the concept of a Time Step (e.g.,
runs involving CFD), a common solution to this problem is
to assume that it takes a fixed number of time steps to solve
the problem (unfortunately, this is only an approximation
whose validity is sometimes left unresolved) [1].  Given this
solution, one can then stick to comparing the performance
based on calculations involving a relatively small number of
time steps.  The down side to this is that start up and
termination costs will now skew the results.  The solution to
this problem is of course to use some method to remove these
costs from consideration (the assumption being that they will
not be excessively large when running the complete problem).

If the simplifications were to stop at this point, we would,
in general, still be on fairly solid ground.  Unfortunately, that
is rarely the case.  Instead, several different approaches are
frequently applied to simplifying this metric even further, and
it is highly questionable if any of these approaches can be
justified except by the claim of expediency.  Let us briefly
look at some of these simplifications and see where the
problems are.

3.1 Ideal Speedup

Most textbooks on parallel programming talk about the
ideal speedup as being linear speedup.  They then go on to
talk about how the performance will deviate from linear
speedup as the result of AmdahlÕs Law, the costs associated
with interprocessor communication, etc.  They may also talk
about scaled speedup [5].  However, while for obvious reasons
it is desirable to have linear speedup as the ideal speedup,
some approaches to parallelization can result in distinctly
nonlinear speedup for the ideal speedup (see the next paragraph
for an example).

If one has a code that is vectorizable but difficult to
parallelize using message-passing code (e.g., many Implicit
CFD codes fall into this category), then the most appropriate
way to parallelize the code might be to use loop-level
parallelism (e.g., OPENMP).  However, if one assumes that
the number of processors being used is within a factor of 10
of the available parallelism (an assumption that will in
general be true when working with 3-D problems and 32 or
more processors), then the ideal speedup will be a stairstep,
rather than a straight line.  Furthermore, if different loops
are parallelized in different directions, and each direction
has a different number of iterations associated with it, then
the ideal speedup will consistently fall well below the line for
linear speedup.

The basis of this claim has to do with the number of
iterations being a small-to-moderate-sized integer.  To see
this, let us assume that we have only one loop to parallelize

and that the available number of processors equals the
available parallelism.  Let us create a plot of performance vs.
the number of processors used.  As we increase the number of
processors being used, we will reach the point where all but
one or two of the processors have two iterations assigned to
them, with the remaining processor(s) having three iterations
assigned to them.  Add another processor, and all of the
processors have, at most, two iterations assigned to them,
and the speed takes a noticeable jump.  Add additional
processors, and nothing happens.  As a result of adding the
additional processors, more and more of the processors only
have one iteration assigned to them, but as long as even one
processor has two iterations assigned to it, the speed will
remain unchanged (in terms of the ideal speedup, on some
real systems, the speed may actually drop).  Finally, when the
number of processors equals the available parallelism, one
will get a significant jump in performance.

This effect can be clearly seen in the theoretical numbers
in Figure 1 and Table 1.  Furthermore, if one looks at actual
results that we have for the Implicit CFD code F3D, one can
see that at least on a well-designed system such as the SGI
Origin 2000, this effect really does exist.
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Figure 1. Predicted speedup for a loop with 15 units of
parallelism.

Table 1. Predicted speedup for a loop with 15 units of
parallelism

No. of
Processors

Maximum Units of Parallelism
Assigned to a Single Processor

Predicted Speedup

1 15 1.000
2 8 1.875
3 5 3.000
4 4 3.750
5Ð7 3 5.000
8Ð14 2 7.500
15 1 15.000
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Figure 2.  Performance results for the one-million-grid-point data set.

From this discussion, one can see that assumptions regarding
what constitutes the ideal speedup can vary depending on the
approach to parallelization.  Additionally, since the use of
loop-level parallelism is primarily restricted to Shared Memory
SMPs (as well as the now obsolete SIMD systems), the
predicted speedup can, at least, indirectly depend on the choice
of system architecture.

3.2 Linear Speedup

Many people seem to be of the impression that the
compilers are producing excellent serial code.  Therefore, all that
they really need to worry about is getting good linear speedup
(or, at least, linear scaled speedup).  A few people go even further
and assume that any good code will get linear speedup/scaled
speedup and that the code will achieve approximately the same
percentage of peak on all RISC (or even RISC/CISC) based
systems.  Based on this train of thought, one is left with the
inescapable conclusion that unless the vendorÕs pricing is way

out of line, one should buy the system with the fastest processor
possible (based purely on peak speed).  In general, these
conclusions are supported by the published Linpack numbers.

The problem is that Linpack is an easily tuned code that, in
general, gives a very high level of performance on almost all
HPC systems currently in production.  If one compares the
Linpack numbers to those of other HPC benchmarks (e.g., the
NAS Parallel Benchmarks), one will, in general, see a poor level
of correlation between the two sets of numbers.  There are three
main reasons for this:

(1) Given poorly tuned code, few if any compilers will
produce a highly efficient executable.  In general, poorly
tuned code will result in performance levels that range
from poor to fair.  The problem is compounded by the
design decisions that all vendors make in designing
their systems.  In some cases, these decisions can make
it nearly impossible to produce highly tuned code for
some/many algorithms.  Therefore, the actual
performance can depend dramatically (in some cases by
a factor of 10 or more) on the skill of the programmer
and the choices made by the system designers.

(2) While some computational kernels (e.g., Linpack) are
easily made to live out of cache, for many other
programs, that is not the case (especially if they are still
written in a manner which favors vector processors).  In
that case, the speed of the program is likely to correlate
strongly with how rapidly data can be moved between
memory and the processor.  Unfortunately, for some



systems, this may limit the programÕs performance to
only a few percent of peak (based on MFLOPS) [6].

(3) As the processors get faster, and assuming that one is
able to maintain the performance as a constant
percentage of peak, then it becomes increasingly more
difficult to obtain linear speedup without increasing the
amount of work assigned to each processor.  The
problem here is that if one doubles the processor speed,
while decreasing the number of processors used by a
factor of two, it is far from clear that the system with the
fastest processors is the best system to buy.  In
particular, since systems with faster processors almost
always cost more per Peak MFLOPS, the system with
the slower processors might actually be more cost
effective and just as fast (given the appropriate number
of processors).

Therefore, we have seen that basing decisions purely on
linear speedup (or even worse, the assumption of linear speedup)
can fail to properly predict the performance of a code-machine
combination for the second metric.

3.3 Maximum Speed

Is the fastest machine the best machine for the job?  If one
is a Grand Challenge user, or alternatively a software developer
primarily interested in pushing the boundaries for really large
jobs, then faster is certainly better.  Once again, this can lead one
to the conclusion that one should only buy/use highly scalable
systems with very fast processors and lots of memory (although
how much memory per processor can still be debated).
However, such a decision can have several penalties associated
with it:

• The new machine might not meet the needs of all of the
users (e.g., those interested in running parametric studies
involving huge numbers of serial jobs).

• Bigger machines tend to be harder and therefore more
expensive to build.  In general, the more scalable the
design is, the greater the cost per delivered (usable)
MFLOPS is likely to be.

• Many users may not need to use huge numbers of
processors.  Alternatively, the users may only be using
large numbers of processors to satisfy their memory
requirements.  Therefore, while many sites are likely to
find that huge highly scalable systems can produce
excellent results for the second metric, they will produce
far from optimal results for the third metric.

However, at many sites, the majority of the cycles are
consumed by jobs using a small-to-moderate percentage of the
total available resources.  Therefore, for the users at these sites,
once the system size has reached a certain point, there is little or
no benefit (there may even be a large penalty) from increasing the
size of an individual system any further.  In such a case, it is
reasonable to do a cost/benefit analysis comparing a single large

system to multiple, moderate-sized systems (this is especially
true when dealing with the metacenter concept, where some
centers may go one way, while others are free to go the other
way, thereby ensuring that the needs of Grand Challenge users
continue to be addressed).  This thought will be discussed
further in section 4.

4 What Is the Overall Turnaround Time for the
Job?

The overall turnaround time is primarily the sum of the
following values:

• Time spent waiting to start running (on many systems,
this can be as long as a week or longer).

• The minimum amount of time required for the program to
execute (this is what one would see on a dedicated
system).

• Any degradation to the run time resulting from not
running on a dedicated system (e.g., resulting from extra
context switches and/or time spent sitting at spin locks).

• Time spent waiting for the operating system to schedule
a jobÕs time slice when running in a time-sharing
environment.

From this, one can see that the three things that matter are:

(1) Minimizing the time spent waiting for a job to start
running.

(2) Ensuring that the minimum run time will more than
meet the needs of most users.

(3) Minimizing/eliminating any sources of degradation to
the run time that result from running in a multiuser
environment.

In theory then, if the nonGrand Challenge jobs collectively
need X amount of delivered GFLOPS, with any one job
requiring a minimum of Y MFLOPS to meet its performance
requirements, then one can buy any system/combination of
systems that delivers X GFLOPS in quantas of Y MFLOPS.
One can then go out and buy the cheapest system that meets
these specifications.

The reality is frequently a bit different than that.  First, one
frequently has a fixed amount of money to spend, so instead of
buying the cheapest system, one will normally buy the largest
complex of systems one can afford.  The second point is that
flexibility in scheduling and use will frequently translate into a
cost savings that will allow one to run more jobs.  In other
words, if different jobs use different numbers of processors, then
it is probably best from a scheduling standpoint if the smallest
systems being considered are at least 2-3 * Y MFLOPS in size.



Another consideration is, How efficiently is the memory
being used?  On shared memory systems, some jobs will be
able to share a single pool of memory M MB in size.  Running
the same job on a distributed memory architecture might then
require replicating the data structures in the local memory of
every processor (this is a common practice for chemistry codes).
As a result, when using N processors, one must now buy N * M
MB of memory.  This can make it much cheaper to run these
jobs on a shared memory system, such as those made by SGI
and SUN.  Unfortunately, it is not always clear if this savings
will still be present when running on less main stream
architectures, such as the KSR1 or even the Convex Exemplar
with its CTI cache.

Even when running a standard message-passing job, different
users may wish to see different amounts of memory per
processor.  If one equips all of the processors only with the
largest amount of memory possible, the throughput might suffer
due to the decreased number of processors in the system.
Therefore, in a throughput oriented environment, it is probably
best to equip different groups of processors with different
amounts of memory.  Exactly how this should be accomplished
(especially when dealing in a metacenter type of environment)
can be quite complicated (in part, because politics will almost
always be a factor in the final decision).  While this discussion
has centered around memory vs. processors, there can be other
resources (e.g., disk drives, I/O controllers, and even software
licenses) that can also be an important part of the picture.  

5 Conclusion

We have seen that there can be a number of factors that
decide which metric is most appropriate in each circumstance.
While many users will want to only report linear speedup, that
is frequently a metric of questionable value.  In particular, while
one might be tempted to say that his or her metric has nothing
to do with the procurement decisions that this paper keeps
stressing, the truth is that more often than not they will have
everything to do with those decisions.  If the decision makers
only see glowing reports, their conclusions may be
unintentionally biased.  If they see mostly glowing reports and
only a limited number of reports that stress the thornier issues,
it can be all too easy to ignore those issues.  Therefore, any user
who writes reports based solely on oversimplified metrics runs
the very real risk of leading management, and possibly even the
entire industry, down a path of uncertain value (at best).

6 References

[1] Dowd, K., and C. Severance.  High Performance
Computing:  RISC Architectures, Optimization &
Benchmarks 2nd Edition, Sebastopol, CA:  OÕReily &
Associates, Inc., 1998.

[2] Pressel, D. M., W. B. Sturek, J. Sahu, and K. R. Heavey.
ÒHow Moderate-Sized RISC-Based SMPs Can Outperform
Much Larger Distributed Memory MPPs.Ó  To be published

in the conference proceedings for the 1999 Advanced
Simulation Technologies Conference, San Diego, CA,
sponsored by The Society for Computer Simulation
International (SCS), 11Ð15 April 1999.

[3] Saini, S. (editor).  NAS Parallel Benchmarks.  NPB 1
Data.
Electronically published at
http/science.nas.nasa.gov/Software
/NPB/NPB1Results/index.html, 17 November 1996.

[4] Fox, G. C., R. D. Williams, and P. C. Messina.  Parallel
Computing Works!  San Francisco, CA:  Morgan Kaufmann
Publishers, Inc., 1994.

[5] Gustafson, J. L.  ÒReevaluating AmdahlÕs Law.Ó
Communications of the ACM, vol. 31, no 5, pp. 532Ð533,
The Association for  Computing Machinery, Inc., May
1988.

[6] OÕNeal, D., and J. Urbanic.  ÒOn Performance and
Efficiency:  Cray Architectures.Ó http://www.psc.edu /~oneal/
eff/eff.html, Parallel Applications Group, Pittsburgh
Supercomputing Center, August 1997.

Glossary

CFD - Computational Fluid Dynamics

CISC - Complicated Instruction Set Computer, an approach to
processor design that assumes that the best way to get good
performance out of a system  is to provide instructions that are
designed to implement key constructs (e.g., loops) from high
level languages.

GLOPS - Billion Floating Point Operations per Second
High Level Languages - Computer languages that are designed
to be relatively easy for the programmer to read and write.
Examples of this type of language are Fortran, Cobol, C, etc.

HPF - High Performance Fortran

Low Level Languages - Computer languages that are designed
to reflect the actual instruction set of a particular computer.  In
general, the lowest level language is known as Machine Code.
Just slightly above machine code is a family of languages
collectively known as Assembly Code.

MB - Million Bytes

MFLOPS - Million Floating Point Operations per Second

MPP - Massively Parallel Processor

NASA - National Aeronautics and Space Administration



RISC - Reduced Instruction Set Computer, an approach to
processor design that argues that the best way to get good
performance out of a system is to eliminate the Micro Code that
CISC systems use to implement most of their instructions.
Instead, all of the instructions will be directly implemented in
hardware.  This places obvious limits on the complexity of the
instruction set, which is why the complexity had to be reduced.

SMP - Symmetric Multiprocessor


