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What is this presentation all about?

¥ What is AMBER?

¥ Why are we interested in AMBER?

¥ Brief(!) introduction to molecular dynamics

¥ Optimizing AMBER

¥ Neighbor list based calculations

¥ Particle mesh Ewald calculations

¥ Lessons learned / applicability to other MD calculations
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What is AMBER?

ÒAMBER is the collective name for a suite of programs that

allow users to carry out molecular dynamics simulations,

particularly on biomolecules.Ó AMBER 5 users guide
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Why are we interested in AMBER?

¥ Largest user of CPU time on SDSCÕs CRAY T3E in both

   both 1997 and 1998.

¥ State of the art program used by researchers

worldwide.

   Developed at UCSF, TSRI, Penn State, U. Minnesota,

   NIEHS, and Vertex Pharmaceuticals

¥ Recognized as an application that could benefit from

  serious performance tuning
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Getting started

Although AMBER is a large suite of programs, the majority

of the CPU usage is accounted for in the SANDER module

Simulated Annealing with NMR-Derived Energy Restraints

Most simulations though have nothing to do with NMR

refinement. Primarily used for energy minimization and

molecular dynamics.

All optimization efforts focused on SANDER



SAN DIEGO SUPERCOMPUTER CE NTER

NATIONAL PARTNERSHIP FOR ADVANCED COMPUTATIONAL INFRASTRUCTURE

Classical molecular dynamics in a nutshell

Initialization

Calculate Forces

Update x,v

(F=ma)

Calculate

diagnostics

Output

Bonded interactions

stretching: Vst = SV(ri-rj)

bending: Vbend= SV(ri,rj,rk)

dihedral: Vdihed= SV(ri,rj,rk,rl)

Non-bonded interactions

van der Waals

hydrogen bonds

electrostatic

Update neighbor lists
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Molecular dynamics schematic

bend stretch

rcut

Non-bonded

interactions

Employing a finite

cutoff reduces problem
from O(N2) to O(N)
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ROUTINE %CPU                  comments                    
NONBON  26 non-bonded interactions
QIKTIP  20 water-water interactions
_SQRT_CODE  13 square root operations
BOUND2  11 periodic bc 
PSOL   7 pairlist construction
BOUND7   5 periodic bc
_sma_deadlock_wait   4 parallel overhead
barrier     2 parallel overhead
FASTWT   1 startup
RESNBA   1 startup

Initial protein kinase benchmark on CRAY T3E (4 CPUs)

As expected, majority of time spent in routines
responsible for force calculations
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Optimizing square root operations

Inverse and inverse-squared interatomic distances are

required in force/energy calculations. In original version of

code, 1/r2 is calculated first and then 1/r is computed as

needed. Doing this saves an FPM operation

do jn=1,npr

  rw(jn) = 1.0/(xwij(1,jn)**2
         +      xwij(2,jn)**2
         +      xwij(3,jn)**2)

enddo

. . .

df2 = -cgoh*sqrt(rw(jn))
r6 = rw(jn)**3

Original code
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Optimizing square root operations (continued)

Unfortunately, original coding is slow. Computation of the inverse
square root does not take any longer than simple square root - get

the inverse operation for free at cost of added FPM

do jn=1,npr

  rw(jn) = 1.0/(xwij(1,jn)**2
         +      xwij(2,jn)**2
         +      xwij(3,jn)**2)

enddo

. . .

df2 = -cgoh*sqrt(rw(jn))
r6 = rw(jn)**3

do jn=1,npr

  rw(jn) = 1.0/sqrt
               (xwij(1,jn)**2
         +      xwij(2,jn)**2

         +      xwij(3,jn)**2)
enddo

. . .

df2 = -cgoh*rw(jn)

rw(jn) = rw(jn)*rw(jn)
r6 = rw(jn)**3

Original code Modified code
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Optimizing square root operations (continued)

By isolating inverse square root operation, get the added bonus of
being able to use highly efficient vector version of function.

do jn=1,npr

  rw(jn) = 1.0/sqrt
               (xwij(1,jn)**2
         +      xwij(2,jn)**2

         +      xwij(3,jn)**2)
enddo

The CRAY f90 compiler automatically
replaces this with a call to the vector 

inverse sqrt function

IBM xlf90 compiler cannot do this
automatically, requires user to insert

call to vrsqrt by hand 

do jn=1,npr

  rw(jn) =  xwij(1,jn)**2
         +  xwij(2,jn)**2
         +  xwij(3,jn)**2

enddo
call vrsqrt(rw,rw,npr)
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Periodic imaging

Periodic boundary conditions are

commonly employed in molecular
dynamics simulations to avoid
problems associated with finite sized

domains.

In the figure, the central square is

the real system and the surrounding
squares are the replicated periodic
images of the system.
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Optimization of periodic imaging

Can drastically reduce time by applying periodic

imaging only to atoms that are within a distance rcut

of the edge of the box.

ibctype=0

if(abs(x(1,i)-boxh(1)).gt.boxh(1)-cutoff)
   ibctype = ibctype + 4
if(abs(y(2,i)-boxh(2)).gt.boxh(2)-cutoff)

   ibctype = ibctype + 2
if(abs(x(3,i)-boxh(3)).gt.boxh(3)-cutoff)
   ibctype = ibctype + 1

call periodic_imaging_routine(..,ibctype)
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Optimization of neighbor list construction

The code used for neighbor list construction is written in such a

way that it can handle the general case of single and dual cufoffs.

Rewriting the code so that different code blocks are called for the two
cases, the common case (single cutoff) can be made very fast.

Forces between green and lavender

recalculated each timestep

Forces between green and yellow

recalculated every n timesteps
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Cache optimizations in force vector evaluation

¥ Loop fusion:

Six loops used to calculate water-water interactions in 

QIKTIP fused into two loops. Maximizes reuse of data.

¥ Collection of 1d work arrays into single 2d-arrays:
RW1(*), RW2(*), RW3(*) fi  RWX(3,1000)

¥ Declaration of force vector work array:
FW(3,*) fi  FWX(9,1000)

¥ Creation of  common block to eliminate cache conflict possibility

common /local_qiktip/RWX(3,1000),FWX(9,1000)
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Making the common case fast - NVT ensemble

AMBER allows for calculations using a number of different
statistical ensembles, including NVT and NPT. For NVT calculations,

donÕt need to save intermediate force vector results.

do jn=1,npr
  . . .

  fwx(1,jn)=xwij(1,jn)*dfa
  f(1,j)=f(1,j)+fwx(1,jn)
  . . . = . . . +fwx(1,jn)

  . . .
Enddo

- fwx(1,jn) used later -

do jn=1,npr
  . . .

  fwx1=xwij(1,jn)*dfa
  f(1,j)=f(1,j)+fwx1
  . . . = . . . +fwx1

  . . . 
Enddo

- fwx1 not needed later -

NPT ensemble NVT ensemble
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Importance of compiler options
Performance of the optimized code on the CRAY T3E was very sensitive to

the choice of compiler options. Very little dependence on IBM SP options.

Case speedup

original code/original flags      -

original code/new flags    0.97
tuned code/original flags   1.48

tuned code/new flags    1.76

Original flags: -dp -Oscalar3

New flags: -dp -Oscalar3 -Ounroll2 -Opipeline2 -Ovector3

Protein kinase test case on four CRAY T3E PEs
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Comparison of original and hand tuned codes

                   IBM SP                                  CRAY T3E
PEs Orig Tuned   speedup Orig Tuned   speedup

1 315 220 1.43 - - -

2 160 113 1.41 316 184 1.72

4 84.4 60.8 1.39 162 96.2 1.69

8 44.8 33.6 1.33 85.0 51.8 1.64

16 25.9 20.3 1.27 46.2 29.6 1.56

32 18.3 15.2 1.20 25.6 17.6 1.45

64 17.1 15.3 1.12 16.4 12.3 1.33

Plastocyanine in water benchmark

¥ Excellent speedup relative to original code on small numbers of processors
¥ T3E wins at larger number of PEs due to better inter-processor network 
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Particle mesh Ewald (PME) calculations

¥ PME is the ÒcorrectÓ way to handle long ranged electrostatic forces.

  Effectively sums effects of all periodic images out to infinity

¥ Due to the structure of the PME routines - most loops contain multiple

   levels of indirect addressing - difficult to optimize

¥ Optimization efforts focused on the statement and basic block levels

¥ PME routines provided less Òlow hanging fruitÓ - already attacked by
  Mike Crowley (TSRI)
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Particle mesh Ewald (PME)  - bitwise optimizations

The PME routines make use of bitwise operations to pack multiple integer

variables into a single integer word. Example: extracting integer data

itran = ishft(n,-27)
n = n - ishft(itran,27)

Extracting high-order bits from

variable n

Same as extracting low-order bits

from original variable n

itran = ishft(n,-27)
n = iand(n,2**27-1) More efficient way to extract

low-order bits using mask

Optimization
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Particle mesh Ewald (PME)  - bitwise optimizations

The PME routines make use of bitwise operations to pack multiple integer

variables into a single integer word. Example: packing integer data

iwa(lpr) = n + ishft(jtran,27)

High-order bits of n empty,

packing jtran into high-order
bits using ishft and add

iwa(lpr) = ior(n,ishft(jtran,27))

Optimization

Achieves same result as

above code, but avoids
arithmetic operation
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Common subexpression elimination

Most Fortran compilers are pretty good at performing common subexpression

elimination, but only if expressions are simple enough.

Following optimization missed by compiler

common_expr = dx*(erf_arr(3,ind)+dx*erf_arr(4,ind)*third)

erfcc = erf_arr(1,ind)+dx*(erf)arr(2,ind)+common_expr*0.5)

derfc = -(erf_arr(2,ind)+common_expr)
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Pulling loop invariants outside of inner loops

This is another optimization that most compilers can do, but only if the

expressions are not too complex.

Following optimization opportunity missed by compilers

- several layers of nested loops -
term = . . .

f1 = f1 - nfft1*term*dth(I1,ig)*th2(i2,ig)*th3(i3,ig)
f2 = f2 - nfft2*term*th(I1,ig)*dth2(i2,ig)*th3(i3,ig)
f3 = f3 - nfft2*term*th(I1,ig)*th2(i2,ig)*dth3(i3,ig)

. . .

Bold terms are loop invariants (w/ regards to innermost loop). Product of
terms pre-calculated in next level up of loop nesting
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Manual prefetching of cache lines

Technique most useful for accessing randomly accessed data, but can give

performance benefits for hardware that does not support hardware streams

do m=1,numvdw
  n = ipairs(n)
  . . .

enddo

nprefetch = ipairs(1)
do m=1,numvdw

  n = nprefetch
  nprefetch = ipairs(m+1)
  . . .

enddo

Guarantees that n will be in cache at start of each iteration, minimizes 
effects of cache misses
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Making the common case fast - NVT ensemble

As was done earlier, took advantage of opportunity to eliminate

operations that are not need for NVT ensemble calculations

vxx = vxx - dfx*delx

. . .
vzz = vzz - dfz*delz

virial(1) = virial(1)+vxx
. . .
virial(6) = virial(6)+vzz

if(NPT_calc) then

 vxx = vxx - dfx*delx
 . . .
 vzz = vzz - dfz*delz

 virial(1) = virial(1)+vxx
 . . .

 virial(6) = virial(6)+vzz
endif
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Comparison of original and hand tuned PME codes

                              Water                                        dhfr

PEs Orig Tuned   speedup Orig Tuned   speedup
2 222.5 172.5 1.29 422.7 331.6 1.27
4 118.4 91.9 1.29 223.2 176.5 1.26

8 64.5 51.0 1.26 119.8 96.5 1.24
16 38.2 30.83 1.24 69.5 56.0 1.24

CRAY T3E benchmarks
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Lessons learned / applicability to other MD calculations

¥ Take advantage of vector inverse square root intrinsics

¥ Compilers are limited in their ability to identify loop invariants
   and common subexpressions. Do these optimizations by hand 

¥ Optimize for the common case, create multiple versions of code
  blocks or subroutines if necessary

¥ Experiment with compiler options - donÕt assume that highest level
  of optimization will work best

¥ Keep in mind physics of the code
¥ What quantities required for NVT, NPT ensembles?
¥ When is periodic imaging required? 


