
A Comparison of MPI and OpenMP Implementations of a Finite Element Analysis Code

Michael Bane
Centre for Novel Computing

Department of Computer Science
University of Manchester

Oxford Road, Manchester M13 9PL
United Kingdom

m.bane@cs.man.ac.uk

Rainer Keller
C/O Michael Resch

Allmandring 30
70550

Stuttgart
Germany

Rainer.keller@studmail.uni-stuttgart.de

Michael Pettipher
Manchester Computing

University of Manchester
Oxford Road, Manchester M13 9PL

United Kingdom
m.pettipher@man.ac.uk

Ian Smith
School of Engineering

University of Manchester
Oxford Road, Manchester M13 9PL

United Kingdom
ian.smith@man.ac.uk

Abstract. In this paper we describe the steps involved, the effort required and the performance achieved in both MPI and OpenMP
implementations of a Fortran 90 finite element analysis code on an SGI Origin2000 using the MIPSpro compiler. We demonstrate that a
working OpenMP version is easier to write, and then explain how to overcome some restrictions of the first version of the API to obtain
better performance.

1 Introduction

Fin ite El ement Analy sis is us ed in a wid e variet y of app licati ons , in clud ing th e des ign of aircraft and cars; civ il eng ineerin g con struct ion
pro jects; th e st udy of geo log ical pro ces ses su ch as fault predi ctio n and the st ructural dev el opm ent of bo nes in th e hu man bo dy. Th e
requi rem ent to so lve su ch pro blems wit h in creasi ng det ai l and in sh orter ti mescales – eit her to reduce th e ov eral l pro ject dev el opm ent
ti me, or for examp le to permi t a con sul tant to pro vid e alm ost imm ediate feedback to a pat ient, has encou rag ed th e dev el opm ent of
parall el im plem en tati ons , parti cularly bas ed on it erat ive alg orith ms .

In an earlier pap er Petti pher and Smi th [5], it was sh own th at a parall el im plem en tati on us ing an elemen t lev el app ro ach cou ld achiev e
very go od resul ts us ing MPI [3] on a Cray T3 D. For th is pap er, th e sam e cod e has been run on an SGI Origi n20 00 , pro ducin g go od
performan ce, alb ei t on a relati vely sm all nu mber of pro ces sors . Th e ob jectiv e here is to in vest igat e ho w well the sam e cod e can be
im plem en ted us ing OpenM P [4].

2 The Codes

Th e cod es , bas ed on th e precon dit ion ed con jug at e gradi ent alg orith m for th e so lut ion of th e li near sy stem Ax= b, rely heavi ly on mat ri x
and vecto r op erat ion s and con sequen tly map very well to Fort ran 90 , mak ing ext en siv e us e of array sy ntax and array in trin sics ,
parti cularly MAT MUL and DOT_PR ODUC T.

Th e bas ic form of th e it erat ive secti on of th e con jug at e gradi ent alg orith m is :

it erat ion s: DO
it ers = it ers + 1
u = MAT MUL(A,p)
up = DOT_PR ODUCT (r, r)
alp ha = up /DOT_PR ODUC T(p,u)
xn ew = x + p* alph a
r = r - u* alph a
bet a = DOT_PR ODUC T(r,d)/u p
p = r + p* beta
x = xn ew ! after tes tin g for con vergence

END DO it erat ion s

where A is th e coefficien t mat ri x, p, u, r, x, xnew are all vecto rs, and al pha and bet a are scalars. Furth er det ai ls are gi ven in vario us tex ts,
bu t see in parti cular Freem an and Phi lli ps [2], and Smi th and Griffith s[7].

Usi ng th e elemen t-based app ro ach gi ves ris e to repeated (on e for each of th e fin ite elemen ts) den se mat ri x-vecto r op erat ion s wit h vecto rs
of len gth 60 (20 no de bri ck elemen ts, each wit h 3 deg rees of freed om per no de), and to op erat ion s wit h vecto rs who se len gth mat ch es th e
nu mber of equ at ion s. (Th e tes t case us ed for th is pap er had 80 00 elemen ts and 10 084 0 equ at ions). However, th is requi res each of th e
len gth 60 vecto rs to be gen erated by a gat her from th e p vecto r, and th e resul t of th e mat ri x vecto r calcul at io n to be scatt ered to vecto r u,
before gen erati ng th e new so lut ion vecto r. In con stant st iffness cases, it can be arran ged th at th e den se mat ri x is th e sam e for all vecto rs,
so th e mat ri x-vecto r op erat ion s can be replaced by a si ngl e mat ri x-mat ri x com put at io n, whi ch permi ts th e us e of lev el 3 BL AS rou tin es
gi vin g su bst anti al performan ce im prov em ents .

Wit h th e di agon al precon dit ion er in clud ed , and wit h rearrang ement to reduce th e th ree do t pro ducts to two whi ch can th en be performed
con cu rren tly th e cod e lo oks li ke th is:

 it erat ion s: DO
it ers = it ers + 1
pm ul = p(g)
ut emp = MAT MUL(km ,pm ul)
u(g) = u(g) + utem p
ud iag = u* diag
do tpu = DOT_PR ODUC T(p,u)
do tuu = DOT_PR ODUC T(u,u diag)
alp ha = do trdo ld/ dot pu
xn ew = x + p* alph a
r = r - u* alph a
d = di ag*r
bet a = alp ha*do tu u/d otp u - 1
do trdo ld = bet a* dot rdol d
p = d + p* beta
x = xn ew ! after tes tin g for con vergen ce

END DO it erat ion s

Th e key di fference is th e replacemen t of th e st atement :

u = MAT MUL(A,p)

where A is a large sp ars e mat ri x, wit h

pm ul = p(g)
ut emp = MAT MUL(km ,pm ul)
u(g) = u(g) + ut emp

where km is a sm all den se mat ri x su ch th at th e su m of all km is equ ivalen t to A, and pm ul and ut emp are mat ri ces con taini ng det ai ls for
all elemen ts. (It is po ssi ble to pu t th ese 3 st atement s wit hin a lo op ov er th e elemen ts, wit h pm ul and ut emp th en bei ng vecto rs, bu t th e
mat ri x versi on is us ed no t on ly to permi t mat ri x-mat ri x com put at io n when km is th e sam e for all elemen ts, bu t als o to reduce th e amo unt
of com mun icatio n in th e MPI im plem en tati on – see th e MPI secti on.)

3 Reproducible Timings

Th e SGI Origi n20 00 sy stem on whi ch th e work was performed is a heavi ly us ed pro ducti on sy stem , is des ign ed to max imi se us e of
resou rces by sh ari ng pro ces sors and mem ory wherever po ssi ble. Th is means in parti cular th at an in div idu al pro ces s mi ght :

• sh are pro ces sors wit h pro ces ses from ot her us ers on a ti mesh ari ng bas is;
• sh are mem ory on a no de wit h ot her pro ces ses;

and
• cod e mi ght mi grate to ot her pro ces sors ;
• dat a mi ght mi grate to ot her pro ces sors .

A con sequen ce of th is is th at it is di ffi cult to ens ure th at an in div idu al jo b us es th e sam e resou rces in th e sam e way in di fferent run s, and
con sequen tly ti min gs bet ween di fferent run s can vary con sid erab ly. Ex clus ive acces s or po ssi bly parti tio ni ng wit h cpu set s wou ld be
id eal , bu t bo th requi re sy stem adm ini strato r con trol, and nei ther are practi cal op tio ns in th is case.

A mechani sm for ‘nail ing ’ jo bs to reserve pro ces sors was dev ised by Graham Ri ley and Mark Bu ll whi le in th e Cen tre for Nov el
Co mpu tin g at th e Uni versit y of Man ch ester (Mark Bu ll has no w mo ved to EPC C). Th is gu aran teed exclu siv e acces s to pro ces sors , bu t
no t to memory, and th us all ev iated so me bu t no t all of th e pro blems . Sub sequen tly SGI no w pro vid e th e mi ser ut ili ty whi ch pro vid es
si mil ar fun ct ion alit y (and ot her features). As th is is su ppo rted by SGI and do es no t requi re sp eci al sy stem pri vil eg e.,i t seems th e best
so lut ion for ti min g cod es on th e Origi n20 00 . Ev en so , th ere can be variat ion bet ween run s – ty picall y of up to 10 % (bu t nearly 40 % has
been ob served. Th e variat ion is larges t on a heavi ly lo aded (in terms of mem ory and I/O as well as CPU us age) sy stem , parti cularly for
th e sh ort run s carri ed ou t here.. However, in li ght of th e resul ts ob tain ed so far, su ch variat ion do es no t alt er th e gen eral in terpretati on wit h
respect to a com pariso n bet ween th e MPI and th e OpenM P resul ts. No att em pt has been to average resul ts – fig ures qu oted are ty picall y
from a si ngl e run , alt hou gh reason ab le con fi dence is ob tain ed from si mil ar run .. For th e tes tin g report ed on here, mi ser is currentl y
restri ct ed to 16 pro ces sors , so no fig ures are gi ven for mo re th an 16 pro ces sors.

4 The MPI Implementation

As des cri bed in Petti pher and Smi th [5] a si mpl e st rat egy is ado pted for th e dat a di stri but ion . Co nsi der again th e th ree st atement s:

pm ul = p(g)
ut emp = MAT MUL(km ,pm ul)
u(g) = u(g) + ut emp

km is sm all (60 x60), so is repli cated on all pro ces sors ;
p and u (and th e ot her vecto rs) are di stri but ed wit h on e di mens ion al bl ocki ng;
pm ul and ut emp (60 x80 00) are di stri but ed in bl ocked col umn format

Th us th e MAT MUL in vol ves no com mun icatio n it self, bu t th ere may be su bst anti al com mun icati on for th e gat her and scatt er. However,
as th e dat a for all elemen ts (th e col umn s of mat ri ces pm ul and ut emp) is st ored, th ere is on ly on e gat her and on e scatt er for each PCG
it erat ion – sp eci al gat her and scatt er rou tin es were writt en to han dle th is. Th e di sadv an tage of us ing mat ri ces for pm ul and ut emp (and
els ewh ere wit hin th e who le cod e), in stead of tem porary vecto rs, reused for each elemen t, is th e add iti onal mem ory requi red , bu t th is has
no t yet been a pro blem.

On th e SGI Origi n20 00 , th e fol lowing resul ts were ob tain ed for a pro blem wit h 80 00 elemen ts and 10 084 0 equ at ion s, and th e nu mber of
PCG it erat ion s li mit ed to 30 to reduce th e to tal ti me. In a mo re realis tic run , th e it erat ion cou nt wou ld be mu ch hi gher resul tin g in th e
PCG ti me bei ng a hi gher pro porti on of th e to tal ti me.

Processo rs 1 16

To tal ti me 17 .8 1. 7
PCG ti me 14 .6 1. 0
PCG sp eed up 1. 0 14 .6
PCG performan ce - %peak 31 % 27 %

Th e PCG performan ce fig ure is bas ed on an est imate of th e nu mber of flo at ing po int op erat ion s performed in thi s secti on and th e peak
performan ce of 16 pro ces sors ..

Th ese resul ts seem very encou rag in g, and are as exp ect ed in li ght of earlier work on di stri but ed mem ory sy stem s [5].

5 OpenMP Implementation

One of the attractions of the shared memory parallelisation approach using OpenMP is the opportunity to perform the work
incrementally, without the major rewriting associated with message passing codes. It is also expected that the final code will be
much closer to the original code and therefore easier to understand, maintain and adapt for different problems. Thus the development
of the OpenMP implementation started with the original Fortran 90 code. However, knowledge gained during the message passing
implementation is relevant for any other parallel implementation – the key areas to be parallelised are still the same and issues such
as the use of BLAS routines instead of Fortran 90 intrinsics should be investigated. What was not so clear at the start of this work is
the extent to which the data distribution should be managed by the programmer - the Origin2000 is a distributed memory machine
and remote data access is more expensive than local. How well does the compiler cope with this and how much must the
programmer control?

Autoparal leli satio n

The MIPSpro compiler (version 7.3.1.1m was used) provides autoparallelisation by the use of the -apo compiler flag. This attempts
to parallelise DO loops within the source code by use of the OpenMP directives. Currently, OpenMP version 1 is implemented by
the compiler.

It will also consider unrolling Fortran 90 array syntax and then parallelising the resulting code (for example for the initialisation of
array A=0.0). However, the -apo flag will not convert Fortran90 intrinsics into parallelisable DO loops - thus MATMUL and
DOT_PRODUCT are not parallelised.

(It is noted in passing that the use of these intrinsics in a OpenMP parallel region means replication of work in that each thread will
perform the complete operation. There is on-going discussions about whether this will change with OpenMP-2)

The -apo flag will also honour the user's OpenMP directives. Alternatively, the user may use the -mp compiler flag to have only
their own directives used.

(It i s al so not ed t hat jus t u sin g – apo gave n o m easurabl e performance increase, wh ether u sin g array int ri nsi cs o r BL AS rout ine.)
Usi ng BL AS Routines

As noted above, the F90 intrinsic MATMUL is not auto-parallelised. The following options were therefore considered:

• replacing the intrinsic with explicit OpenMP DO loops
• the use of the Basic Linear Algebra Subprograms (BLAS), particularly the level-3 BLAS dgemm.

To use the BLAS, the user has to link with the relevant library. The obvious choice is of -lblas and -lblas_mp but alternatives could
be -lscs_blas, -lscs and -lnag for the former or -lscs_blas and -lscs_mp for the latter.

The -lblas links the object codes with a serial implementation whereas the -lblas_mp links to a parallel version of the required BLAS
routine. It is not stated in the SGI documentation how the parallelisation of the latter is controlled. It is noted that under miser, -
lblas_mp will use (up to) the number of processors given in the miser command line.

Note also that the use of -lblas_mp for calls to BLAS which are already in a parallel region leads to a significant decrease in
performance, as compared to the use of the serial implementation of the BLAS in that parallel region. It is believed that this is due
to each thread in the parallel region spawning additional threads which are then timesliced resulting in an excessive number of
threads and decreased performance.

Code Implementatio n

As indicated in previous sections, the major computational part of the code is the matrix multiplication part of the PCG iterations.
Consider the following DO loop format:

DO iel = 1, nels
pmul(:,iel) = p(g(:,iel)) ! Gather

END DO
utemp = MATMUL(km,pmul)

DO iel = 1, nels
u(g(:,iel)) = u(g(:,iel)) + utemp(:,iel) ! Scatter

END DO

The question is how best to parallelise with OpenMP?

As MATMUL will not parallelise, this should be replaced, either using the parallel BLAS routine, dgemm, or an explicit DO loop
with OpenMP directives. Both were tried:

dgemm_mp Explicit
Procs Time Speedup Time Speedup

1 6.3 1.0 9.9 1.0
2 3.3 1.9 4.7 2.1
4 1.9 3.4 2.5 4.0
8 1.0 6.1 1.2 8.0
16 0.6 10.2 0.6 15.3

Thus the time on 16 processors is the same whichever is used, but dgemm is better cache optimised on a single processor (no
attempt was made to do any cache optimisation in the explicit version). It appears therefore that the dgemm routine is preferable, but
there are implications which should be born in mind.

 First, linking with the parallel BLAS library as used here, might limit the use of serial BLAS routines as mentioned above.

Secondly, the performance of any code on the Origin2000 depends on where data resides. (This is true of any NUMA architecture.)
Although it is tempting to incrementally add OpenMP statements to parallelise time consuming loops, this may not be the optimal
solution. It is important to consider how the operating system determines the placement of data. On the Origin2000, the default is a
"first touch" policy - the thread that first touches a data item (that is not already placed) will force the operating system to place the
page containing that data item on the memory associated with that thread (which may or may not be the physically closer memory).
Furthermore, by default, data will not migrate between memories as a result of the program execution. (However, it may change
due to the operating system paging out the program completely and then paging it back in but on different threads and memories.)

Given that the cost of accessing data from distant memory is significantly higher than accessing data from a processor’s local L2
cache, the initial data placement can have a significant effect on program performance. For a code that has parallel regions it is
therefore important to ensure that the data is distributed satisfactorily so that each thread is accessing data as locally as possible. This
is achieved by parallelising the initialisation part of a code as well as the time consuming parts.

For example, in this code, the main time was spent in the matrix multiplication of km by pmul to form utemp. Merely converting
the MATMUL to three DO loops and parallelising them will not lead to maximum performance. As the first time the variables km,
pmul and utemp are touched is another matrix multiplication, this can be parallelised in a similar fashion to ensure maximum
performance for the key matrix multiplication section. Given it is not known how dgemm will force the data to be distributed, if an
explicit OpenMP implemementation is used for the main matrix multiplication section it should also be used it in a similar way for
the initialisation section too.

This point indicates the importance of the data management which is potentially under the control of the programmer. (It is possible
to take this further still by using SGI directives to place data on particular memory and code on particular threads, but this option
was not considered due to issues of portability.)

The gather loop above can be easily parallelised with OpenMP directives :

!$OMP PARALLEL DO default(none) &
!$OMP PRIVATE (iel) SHARED (nels, pmul, g, p)

DO iel = 1, nels
pmul(:,iel) = p(g(:,iel))

END DO
!$OMP END PARALLEL

The scatter, however :

DO iel = 1, nels
u(g(:,iel)) = u(g(:,iel)) + utemp(:,iel) ! Scatter

END DO

cannot easily be parallelised because of the potential (and actual) dependency in assigning elements of vector u.

The answer to this should be to use the !$OMP ATOMIC directive, which allows the update to be performed in a controlled and
parallel manner. However no performance improvement has been obtained using this directive, in comparison with a serial
implementation of this loop. It is thought that the synchronisation costs negate any increase in performance due to parallelisation.

In order to circumvent this situation PRIVATE temporary arrays can be used for u on each thread which are then brought together in
a REDUCTION-type operation. (Note that OpenMP version 1 allows only scalars in the REDUCTION clause). This gives (noting
that it is already in a PARALLEL region):

my_id = omp_get_thread_num()
!$OMP DO
 do j = 1, neq
 do i = 0, omp_get_num_threads()-1
 dist_u(i, j) = u(j)

end do
 end do
!$OMP END DO

!$OMP DO
 do iel = 1 , nels
 do i = 1 , ndof
 dist_u(my_id,g_g(i,iel)) = dist_u(my_id,g_g(i,iel)) +g_utemp(i,iel)
 end do
 end do
!$OMP END DO

!$OMP DO
 do j = 1, neq
 do i = 0, omp_get_num_threads()-1

 u(j) = u(j) + dist_u(i, j)
end do

 end do
!$OMP END DO

Although this code removes the synchronisation cost of each update to the elements of u, it does so at the cost of additional memory
requirements (for dist_u) and copying arrays. (There are also 3 barriers, one at the end of each OMP DO construct.)

Once all the time consuming loops (gather, multiply, scatter) have been put into OpenMP constructs, it is necessary to consider
simple transformations of the code in order to minimise synchronisation costs. Examples include, creating the largest possible
PARALLEL region, using as many NOWAIT clauses with DO loops as possible, and moving all sequential parts of the code into
one SINGLE clause (or replicating work, where possible). Thus the final OpenMP code does not map simply onto the original code
with just additions of OMP directives.

Whereas the compiler is good at basic code manipulation for optimisation on a single node (eg prefetching) there is no support for
rearranging OpenMP constructs. Furthermore, there are often several alternative methods of using OMP directives to obtain the
same result. The choice of ATOMIC, CRITICAL and SINGLE for the updating of u, for example.

Other parts of the code

In general, it is relatively easy to parallelise the rest of the code, but the use of Fortran 90 array syntax and intrinsics does seem to
require particular care. For example, the initialisation statements:

diag_precon = 0.0
oldis = 0.0
tensor = 0.0
loads = 0.0

where tensor is a 3D array and all the rest are vectors. All of these statements were parallelised, but as separate loops (no loop
fusion). If a DO loop is used instead, a single parallel loop is generated, reducing parallelisation overheads.

Results for OpenMP implementatio n:

As indicated above, the scatter operation is crucial to the good performance of this code, and as yet this has not been fully dealt
with. The following results were obtained using the PRIVATE temporary arrays as mentioned above:

Processo rs 1 16
To tal ti me 17 .4 5. 2
PCG ti me 15 .2 1. 9
PCG sp eed up 1. 0 8. 0
PCG performan ce - %peak 30 % 15 %

Thus the single processor times roughly match those for the MPI version, but for 16 processors, the performance in the PCG section
is roughly half as good.

6 Comparison Between MPI and OpenMP Implementations

Th e key is sue in th e com pariso n of th e resul ts is th at on 16 pro ces sors , th e OpenM P versi on is abo ut twi ce as sl ow as th e MPI versi on in
th e PCG secti on. (Th e OpenM P versi on is als o sl ower for th e ot her parts of th e cod e, bu t th is wil l be les s im port an t for mo re realis tic run s
when mo st of th e ti me wil l be sp ent performi ng th e PCG.)

However it sh oul d be no ted th at man y mo nth s were sp ent on dev el opi ng and im prov ing th e MPI versi on of th e cod e, whi le su bst anti ally
les s has been sp ent on th e OpenM P versi on. If th e OpenM P versi on had been fou nd to perform as well as th e MPI versi on, th en th e
reduced dev el opm ent ti me wou ld be a clear ben efi t, bu t ju st becaus e it do es no t, it is un fai r at th is st age to say th at OpenM P canno t
perform as well. In fact th e aut hors are op tim ist ic th at furth er im prov em ent can be ob tain ed after mo re det ai led analy sis . For examp le
Bu ll [1] no ted th at th e !$OMP RE DUC TION claus e on an Origi n20 00 is exp en siv e. Th e current im plem en tati on cou ld po ssi bly ben efi t
from rewri tin g in a way whi ch reduces th e nu mber of reduct ion s.

Wit h th e abo ve com ments in mi nd, it is st ill po ssi ble to mak e so me meani ngfu l com pariso ns for th is parti cular code.

Fo r MPI
• Known to give good performance for large numbers of processors and for larger problems and on a variety of distributed

memory systems.
• Portable across most (if not all) parallel systems.
• Easier to understand how the data is distributed and where the time is spent.
• Many tools available to assist the programmer.

Aga inst MPI
• Coding complex to read, write and maintain

Fo r OpenMP
• OpenMP code is initially much easier to write, modify and maintain
• Once one code is satisfactory, it should be easy to parallelise other codes in a similar way

Aga inst OpenMP
• Too easy to overlook necessary (or un-necessary) synchronisations

• Lack of tools inhibits quick program development

• Portability limited to subset of parallel systems with (virtual) shared memory.

7 Conclusions

Th e mai n con cl usi on is th at exp ect ing to be abl e to pro duce a go od, parall el im plem en tati on us ing OpenM P, wi th very li ttl e eff ort , is , in
gen eral, un real ist ic. Th e pro grammer mu st be aware of th e dat a man ag ement is sues , and kn ow when and ho w to con trol th ese exp licit ly .

Th e ot her con cern wit h th is cod e is th at th e us e of Fortran 90 , parti cularly th e array in trin sics , whi ch si mpl ifies th e cod ing con sid erab ly in
com pariso n wit h th e Fortran 77 equ ivalen t, seems to hi nder im plem en tati on wit h OpenM P. However as no ted earlier, th e nex t release of
OpenM P wil l in clud e vario us enh an cem ents , in clud ing (it is bel ieved) th e parall el is at ion of th e Fortran 90 in trin sics .

It is recogn ised th at th ere is mo re work to do in th is parti cular im plem en tati on, bu t th e aut hors are op tim ist ic th at go od performan ce is
achiev ab le wit h no t to o mu ch mo re effort.

8 References

1. Bul l, M. .J. 19 99, Measu ring Syn ch roni sati on and Schedu lin g Overheads in OpenM P, First Eu ropean Works hop on OpenM P,
ht tp: //www.i t.l th. se/ewom p99 /

2. Freem an, T. L. and Phi lli ps, C. 19 92, Paral lel Num eri cal Alg orith ms , Prenti ce Hall
3. MPI: A Mes sage Passi ng Int erface Stand ard , Mes sage Passi ng Int erface Forum , 19 95, Uni versit y of Ten nessee
4. OpenM P Specificati on 19 99, from ht tp: //www.o penm p.o rg/
5. Petti pher, M. A. and Smi th, I.M ., 19 97, Th e Develo pmen t of an MPP Imp lement atio n of a Sui te of Fin ite El ement Co des, in

pro ceedi ng s of Hig h Perfo rmance Co mpu tin g and Networki ng 19 97, Ed s: Hertzberger, B and Slo ot, P
6. Smi th, I. M. 20 00, General Purpo se Paral lel Fin ite El ement Programm in g, En gin eeri ng Co mpu tati ons , 17 , 1, 75 -91
7. Smi th, I. M. , and Griffith s, D.V. 19 97 Programm in g th e Fin ite El ement Met hod 3rd (Fortran 90) edi tio n, Wil ey

Appendix - Systems and Software used

All of the results for this paper were produced on a 40 processor (195 MHz, R10000 processors, each with 4Mb L2 cache) SGI
Origin2000 system at the University of Manchester. The timings were obtained under miser, using MIPSpro 7.3.1.1m and Irix
6.5.6m. The common compiler flags used for both MPI and OpenMP versions were:
f90 –64 –mips4 –O3 –r10000 –r8.

