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Abstract. In this paper we describe the steps involved, the effort required and the performance achieved in both MPI and OpenMP
implementations of a Fortran 90 finite element analysis code on an SGI Origin2000 using the MIPSpro compiler. We demonstrate that a
working OpenMP version is easier to write, and then explain how to overcome some restrictions of the first version of the API to obtain
better performance. 

1  Introduction

Fin ite El ement Analy sis  is  us ed in  a wid e variet y of app licati ons , in clud ing  th e des ign  of aircraft  and  cars; civ il eng ineerin g con struct ion 
pro jects;  th e st udy  of geo log ical pro ces ses su ch as fault  predi ctio n and  the st ructural  dev el opm ent of bo nes in  th e hu man bo dy.  Th e
requi rem ent to  so lve su ch pro blems  wit h in creasi ng  det ai l and  in  sh orter ti mescales  – eit her to  reduce th e ov eral l pro ject dev el opm ent
ti me, or for examp le to  permi t a con sul tant  to  pro vid e alm ost  imm ediate feedback to  a pat ient,   has   encou rag ed th e dev el opm ent of
parall el  im plem en tati ons , parti cularly  bas ed  on  it erat ive alg orith ms .

In an earlier pap er Petti pher and  Smi th [5], it  was sh own th at a parall el  im plem en tati on us ing  an elemen t lev el  app ro ach cou ld achiev e
very go od resul ts us ing  MPI [3] on  a Cray T3 D.  For th is pap er,  th e sam e cod e has  been run  on  an SGI Origi n20 00 , pro ducin g go od
performan ce,  alb ei t on  a relati vely  sm all nu mber of pro ces sors . Th e ob jectiv e here is  to  in vest igat e ho w well the sam e cod e can be
im plem en ted us ing  OpenM P [4].

2  The Codes

Th e cod es , bas ed  on  th e precon dit ion ed con jug at e gradi ent alg orith m for th e so lut ion  of th e li near sy stem  Ax= b, rely heavi ly on  mat ri x
and  vecto r op erat ion s and  con sequen tly  map  very well to  Fort ran  90 , mak ing  ext en siv e us e of array  sy ntax  and  array  in trin sics ,
parti cularly  MAT MUL and  DOT_PR ODUC T.

Th e bas ic form of th e it erat ive secti on of th e con jug at e gradi ent alg orith m is :

it erat ion s: DO
it ers  = it ers  + 1
u = MAT MUL(A,p )
up  = DOT_PR ODUCT (r, r)
alp ha = up /DOT_PR ODUC T(p,u )
xn ew = x + p* alph a
r = r - u* alph a
bet a = DOT_PR ODUC T(r,d)/u p
p = r + p* beta
x = xn ew ! after tes tin g for con vergence

END DO it erat ion s



where A is  th e coefficien t mat ri x, p,  u,  r,   x, xnew are all  vecto rs, and  al pha  and  bet a are scalars.  Furth er det ai ls are gi ven in  vario us tex ts,  
bu t see in  parti cular Freem an and  Phi lli ps [2], and  Smi th and  Griffith s[7]. 

Usi ng th e elemen t-based  app ro ach  gi ves ris e to  repeated (on e for each of th e fin ite elemen ts) den se mat ri x-vecto r op erat ion s wit h vecto rs
of len gth  60  (20  no de bri ck  elemen ts,   each wit h 3 deg rees of freed om per no de), and  to  op erat ion s wit h vecto rs who se len gth  mat ch es th e
nu mber of equ at ion s.  (Th e tes t case us ed for th is pap er had  80 00 elemen ts and  10 084 0 equ at ions ). However, th is requi res  each of th e
len gth  60  vecto rs to  be gen erated  by  a gat her from th e p vecto r, and  th e resul t of th e mat ri x vecto r calcul at io n to  be scatt ered  to  vecto r u,
before gen erati ng  th e new so lut ion  vecto r. In con stant  st iffness  cases,  it  can be arran ged th at th e den se mat ri x is  th e sam e for all  vecto rs,
so  th e mat ri x-vecto r op erat ion s can be replaced by  a si ngl e mat ri x-mat ri x com put at io n, whi ch  permi ts th e us e of lev el  3 BL AS rou tin es 
gi vin g su bst anti al performan ce im prov em ents .

Wit h th e di agon al  precon dit ion er in clud ed , and  wit h rearrang ement  to  reduce th e th ree do t pro ducts  to  two  whi ch  can th en be performed 
con cu rren tly  th e cod e lo oks  li ke th is: 

 it erat ion s: DO
it ers  = it ers  + 1
pm ul = p(g )
ut emp = MAT MUL(km ,pm ul)
u(g ) = u(g ) + utem p
ud iag = u* diag 
do tpu  = DOT_PR ODUC T(p,u )
do tuu  = DOT_PR ODUC T(u,u diag )
alp ha = do trdo ld/ dot pu
xn ew = x + p* alph a
r = r - u* alph a
d = di ag*r
bet a = alp ha*do tu u/d otp u - 1
do trdo ld = bet a* dot rdol d
p = d + p* beta
x = xn ew ! after tes tin g for con vergen ce

END DO it erat ion s

Th e key  di fference is  th e replacemen t of th e st atement :

u = MAT MUL(A,p )

where A  is  a large sp ars e mat ri x, wit h

pm ul = p(g )
ut emp = MAT MUL(km ,pm ul)
u(g ) = u(g ) + ut emp

where km  is  a sm all den se mat ri x su ch th at th e su m of all km  is  equ ivalen t to  A, and   pm ul and  ut emp are mat ri ces  con taini ng  det ai ls for
all  elemen ts.   (It is  po ssi ble to  pu t th ese 3 st atement s wit hin  a lo op ov er th e elemen ts,   wit h pm ul and  ut emp th en bei ng vecto rs,  bu t th e
mat ri x versi on is  us ed no t on ly to  permi t mat ri x-mat ri x com put at io n when km  is  th e sam e for all  elemen ts,   bu t als o to  reduce th e amo unt 
of com mun icatio n in  th e MPI im plem en tati on – see th e MPI secti on. )

3 Reproducible Timings

Th e SGI Origi n20 00  sy stem  on  whi ch  th e work was performed  is  a heavi ly us ed pro ducti on  sy stem , is  des ign ed  to  max imi se us e of
resou rces  by  sh ari ng pro ces sors  and  mem ory wherever po ssi ble.  Th is means  in  parti cular th at an in div idu al pro ces s mi ght :

• sh are pro ces sors  wit h pro ces ses from ot her us ers  on  a ti mesh ari ng bas is; 
• sh are mem ory on  a no de wit h ot her pro ces ses; 

and 
• cod e mi ght  mi grate to  ot her pro ces sors ;
• dat a mi ght  mi grate to  ot her pro ces sors .



A con sequen ce of th is is  th at it  is  di ffi cult  to  ens ure th at an in div idu al jo b us es th e sam e resou rces  in  th e sam e way in  di fferent  run s, and 
con sequen tly  ti min gs bet ween di fferent  run s can vary con sid erab ly.  Ex clus ive acces s or po ssi bly  parti tio ni ng  wit h cpu  set s wou ld be
id eal , bu t bo th requi re sy stem  adm ini strato r con trol,   and  nei ther are practi cal  op tio ns in  th is case.

A mechani sm for ‘nail ing ’ jo bs to  reserve pro ces sors  was dev ised by  Graham Ri ley and  Mark Bu ll whi le in  th e Cen tre for Nov el 
Co mpu tin g at th e Uni versit y of Man ch ester (Mark Bu ll has  no w mo ved to  EPC C). Th is gu aran teed exclu siv e acces s to  pro ces sors , bu t
no t to  memory, and  th us all ev iated  so me bu t no t all  of th e pro blems . Sub sequen tly  SGI no w pro vid e th e mi ser ut ili ty whi ch  pro vid es 
si mil ar fun ct ion alit y (and ot her features).  As th is is  su ppo rted by  SGI and  do es no t requi re sp eci al sy stem  pri vil eg e.,i t seems  th e best 
so lut ion  for ti min g cod es  on  th e Origi n20 00 . Ev en so , th ere can be variat ion  bet ween run s – ty picall y of up  to  10 % (bu t nearly   40 % has 
been ob served.  Th e variat ion  is  larges t on  a heavi ly lo aded (in  terms  of mem ory and  I/O as well as CPU us age) sy stem , parti cularly  for
th e sh ort run s carri ed ou t here..   However, in  li ght  of th e resul ts ob tain ed  so  far, su ch variat ion  do es no t alt er th e gen eral in terpretati on wit h
respect to  a com pariso n bet ween th e MPI and  th e OpenM P resul ts.   No att em pt has  been to  average resul ts – fig ures qu oted  are ty picall y
from a si ngl e run , alt hou gh reason ab le con fi dence is  ob tain ed  from si mil ar run .. For th e tes tin g report ed  on  here, mi ser is  currentl y
restri ct ed to  16  pro ces sors , so  no  fig ures are gi ven for mo re th an 16  pro ces sors. 

4  The MPI  Implementation

As des cri bed in  Petti pher and  Smi th [5] a si mpl e st rat egy is  ado pted for th e dat a di stri but ion . Co nsi der again  th e th ree st atement s:

pm ul = p(g )
ut emp = MAT MUL(km ,pm ul)
u(g ) = u(g ) + ut emp

km  is  sm all (60 x60 ),   so  is  repli cated on  all  pro ces sors ;
p and  u (and th e ot her vecto rs) are di stri but ed wit h on e di mens ion al bl ocki ng; 
pm ul and  ut emp  (60 x80 00) are di stri but ed in  bl ocked col umn  format 

Th us th e MAT MUL in vol ves no  com mun icatio n it self, bu t th ere may  be su bst anti al com mun icati on for th e gat her and  scatt er.   However,
as th e dat a for all  elemen ts (th e col umn s of mat ri ces  pm ul and  ut emp) is  st ored, th ere is  on ly on e gat her and  on e scatt er for each PCG
it erat ion  – sp eci al gat her and  scatt er rou tin es  were writt en to  han dle th is.   Th e di sadv an tage of us ing  mat ri ces  for pm ul and  ut emp (and
els ewh ere wit hin  th e who le cod e),  in stead of tem porary vecto rs, reused  for each elemen t, is  th e add iti onal  mem ory requi red , bu t th is has 
no t yet  been a pro blem. 

On th e SGI Origi n20 00 , th e fol lowing  resul ts were ob tain ed  for a pro blem wit h 80 00 elemen ts and  10 084 0 equ at ion s,  and  th e nu mber of
PCG it erat ion s li mit ed to  30  to  reduce th e to tal ti me. In a mo re realis tic run , th e it erat ion  cou nt wou ld be mu ch hi gher resul tin g in  th e
PCG ti me bei ng a hi gher pro porti on  of th e to tal ti me.

Processo rs 1 16 

To tal ti me 17 .8 1. 7
PCG ti me 14 .6 1. 0
PCG sp eed up 1. 0 14 .6
PCG performan ce - %peak 31 % 27 %

Th e PCG performan ce fig ure is  bas ed  on  an est imate of th e nu mber of flo at ing  po int  op erat ion s performed  in  thi s secti on and  th e peak
performan ce of 16  pro ces sors ..

Th ese resul ts seem very encou rag in g, and  are as exp ect ed  in  li ght  of earlier work on  di stri but ed mem ory sy stem s [5].



5  OpenMP Implementation

One of the attractions of the shared memory parallelisation approach using OpenMP is the opportunity to perform the work
incrementally, without the major rewriting associated with message passing codes. It is also expected that the final code will be
much closer to the original code and therefore easier to understand, maintain and adapt for different problems. Thus the development
of  the OpenMP implementation started with the original Fortran 90 code. However, knowledge gained during the message passing
implementation is relevant for any other parallel implementation – the key areas to be parallelised are still the same and issues such
as the use of BLAS routines instead of Fortran 90 intrinsics should be investigated. What was not so clear at the start of this work is
the extent to which the data distribution should be managed by the programmer  - the Origin2000 is a distributed memory machine
and remote data access is more expensive than local. How well does the compiler cope with this and how much must the
programmer control?

Autoparal leli satio n

The MIPSpro compiler (version 7.3.1.1m was used) provides autoparallelisation by the use of the -apo compiler flag. This attempts
to parallelise DO loops within  the source code by use of the OpenMP directives. Currently, OpenMP version 1 is implemented by
the compiler.

It will also consider unrolling Fortran 90 array syntax and then parallelising the resulting code (for example for the initialisation of
array A=0.0). However, the -apo flag will not convert Fortran90 intrinsics into parallelisable DO loops - thus MATMUL and
DOT_PRODUCT are not parallelised.

(It is noted in passing that the use of these intrinsics in a OpenMP parallel region means replication of work in that each thread will
perform the complete operation. There is on-going discussions about whether this will change with OpenMP-2)

The -apo flag will also honour the user's OpenMP directives. Alternatively, the user may use the -mp compiler flag to have only
their own directives used.

(It i s al so not ed t hat jus t u sin g – apo gave n o m easurabl e performance increase, wh ether u sin g array int ri nsi cs o r BL AS rout ine.)
Usi ng  BL AS Routines

As noted above, the F90 intrinsic MATMUL is not auto-parallelised. The following options were therefore considered:

•  replacing the intrinsic with explicit OpenMP DO loops
•  the use of the Basic Linear Algebra Subprograms (BLAS), particularly the level-3 BLAS dgemm.

To use the BLAS, the user has to link with the relevant library. The obvious choice is of -lblas and -lblas_mp but alternatives could
be -lscs_blas, -lscs and -lnag for the former or -lscs_blas and -lscs_mp for the latter.

The -lblas links the object codes with a serial implementation whereas the -lblas_mp links to a parallel version of the required BLAS
routine. It is not stated in the SGI documentation how the parallelisation of the latter is controlled. It is noted that under miser, -
lblas_mp will use (up to) the number of processors given in the miser command line.

Note also that the use of -lblas_mp for calls to BLAS which are already in a parallel region leads to a significant decrease in
performance, as compared to the use of the serial implementation of the BLAS in that parallel region. It is believed that this is due
to each thread in the parallel region spawning additional threads which are then timesliced resulting in an excessive number of
threads and decreased performance.



Code Implementatio n

As indicated in previous sections, the major computational part of the code is the matrix multiplication part of the PCG iterations.
Consider the following DO loop format:

DO iel = 1, nels
pmul(:,iel) = p(g(:,iel))   ! Gather

END DO
utemp = MATMUL(km,pmul)

DO iel = 1, nels
u(g(:,iel)) = u(g(:,iel)) + utemp(:,iel)  ! Scatter

END DO

The question is how best to parallelise with OpenMP?

As MATMUL will not parallelise, this should be replaced, either using the parallel BLAS routine, dgemm, or an explicit DO loop
with OpenMP directives. Both were tried:

dgemm_mp Explicit
Procs Time Speedup Time Speedup

1 6.3 1.0 9.9 1.0
2 3.3 1.9 4.7 2.1
4 1.9 3.4 2.5 4.0
8 1.0 6.1 1.2 8.0
16 0.6 10.2 0.6 15.3

Thus the time on 16 processors is the same whichever is used, but dgemm is better cache optimised on a single processor (no
attempt was made to do any cache optimisation in the explicit version). It appears therefore that the dgemm routine is preferable, but
there are implications which should be born in mind.

 First, linking with the parallel BLAS library as used here, might limit the use of serial BLAS routines as mentioned above.

Secondly, the performance of any code on the Origin2000 depends on where data resides. (This is true of any NUMA architecture.)
Although it is tempting to incrementally add OpenMP statements to parallelise time consuming loops, this may not be the optimal
solution. It is important to consider how the operating system determines the placement of data. On the Origin2000, the default is a
"first touch" policy - the thread that first touches a data item (that is not already placed) will force the operating system to place the
page containing that data item on the memory associated with that thread (which may or may not be the physically closer memory).
Furthermore, by default, data will not migrate between memories as a result of the program execution. (However, it may change
due to the operating system paging out the program completely and then paging it back in but on different threads and memories.)

Given that the cost of accessing data from distant memory is significantly higher than accessing data from a processor’s local L2
cache, the initial data placement can have a significant effect on program performance. For a code that has parallel regions it is
therefore important to ensure that the data is distributed satisfactorily so that each thread is accessing data as locally as possible. This
is achieved by parallelising the initialisation part of a code as well as the time consuming parts.

For example, in this code, the main time was spent in the matrix multiplication of km by pmul to form utemp. Merely converting
the MATMUL to three DO loops and parallelising them will not lead to maximum performance. As the first time the variables km,
pmul and utemp are touched is another matrix multiplication, this can be parallelised in a similar fashion to ensure maximum
performance for the key matrix multiplication section. Given it is not known how dgemm will force the data to be distributed, if an
explicit OpenMP implemementation is used for the main matrix multiplication section it should also be used it in a similar way for
the initialisation section too.



This point indicates the importance of the data management which is potentially under the control of the programmer. (It is possible
to take this further still by using SGI directives to place data on particular memory and code on particular threads, but this option
was not considered due to issues of portability.)

The gather loop above can be easily parallelised with OpenMP directives :

!$OMP PARALLEL DO default(none) &
!$OMP PRIVATE (iel) SHARED (nels, pmul, g, p)

DO iel = 1, nels
pmul(:,iel) = p(g(:,iel))

END DO
!$OMP END PARALLEL

The scatter, however :

DO iel = 1, nels
u(g(:,iel)) = u(g(:,iel)) + utemp(:,iel)  ! Scatter

END DO

cannot easily be parallelised because of the potential (and actual) dependency in assigning elements of vector u.

The answer to this should be to use the !$OMP ATOMIC directive, which allows the update to be performed in a controlled and
parallel manner. However no performance improvement has been obtained using this directive, in comparison with a serial
implementation of this loop. It is thought that the synchronisation costs negate any increase in performance due to parallelisation.

In order to circumvent this situation PRIVATE temporary arrays can be used for u on each thread which are then brought together in
a REDUCTION-type operation. (Note that OpenMP version 1 allows only scalars in the REDUCTION clause). This gives (noting
that it is already in a PARALLEL region):

my_id = omp_get_thread_num()
!$OMP DO
      do j = 1, neq
        do i = 0, omp_get_num_threads()-1
    dist_u(i, j) = u(j)

end do
      end do
!$OMP END DO

!$OMP DO
      do iel = 1 , nels
           do i = 1 , ndof
              dist_u(my_id,g_g(i,iel)) = dist_u(my_id,g_g(i,iel)) +g_utemp(i,iel)
           end do
      end do
!$OMP END DO

!$OMP DO
      do j = 1, neq
        do i = 0, omp_get_num_threads()-1

  u(j) = u(j) + dist_u(i, j)
end do

      end do
!$OMP END DO



Although this code removes the synchronisation cost of each update to the elements of u, it does so at the cost of additional memory
requirements (for dist_u) and copying arrays. (There are also 3 barriers, one at the end of each OMP DO construct.)

Once all the time consuming loops (gather, multiply, scatter) have been put into OpenMP constructs, it is necessary to consider
simple transformations of the code in order to minimise synchronisation costs. Examples include, creating the largest possible
PARALLEL region, using as many NOWAIT clauses with DO loops as possible, and moving all sequential parts of the code into
one SINGLE clause (or replicating work, where possible). Thus the final OpenMP code does not map simply onto the original code
with just additions of OMP directives.

Whereas the compiler is good at basic code manipulation for optimisation on a single node (eg prefetching) there is no support for
rearranging OpenMP constructs. Furthermore, there are often several alternative methods of using OMP directives to obtain the
same result. The choice of ATOMIC, CRITICAL and SINGLE for the updating of u, for example.

Other parts of the code

In general, it is relatively easy to parallelise the rest of the code, but the use of Fortran 90 array syntax and intrinsics does seem to
require particular care. For example, the initialisation statements:

diag_precon = 0.0
oldis = 0.0
tensor = 0.0
loads = 0.0

where tensor is a 3D array and all the rest are vectors. All of these statements were parallelised, but as separate loops (no loop
fusion). If a DO loop is used instead, a single parallel loop is generated, reducing parallelisation overheads.

Results for OpenMP implementatio n:

As indicated above,  the scatter operation is crucial to the good performance of this code, and as yet this has not been fully dealt
with. The following results were obtained using the PRIVATE temporary arrays as mentioned above:

Processo rs 1 16 
To tal ti me 17 .4 5. 2
PCG ti me 15 .2 1. 9
PCG sp eed up 1. 0 8. 0
PCG performan ce - %peak 30 % 15 %

Thus the single processor times roughly match those for the MPI version, but for 16 processors, the performance in the PCG section
is roughly half as good.



6 Comparison Between MPI and OpenMP Implementations

Th e key  is sue in  th e com pariso n of th e resul ts is  th at on  16  pro ces sors , th e OpenM P versi on is  abo ut twi ce as  sl ow as th e MPI versi on in 
th e PCG secti on.  (Th e OpenM P versi on is  als o sl ower for th e ot her parts  of th e cod e,  bu t th is wil l be les s im port an t for mo re realis tic run s
when mo st of th e ti me wil l be sp ent performi ng  th e PCG.)

However it  sh oul d be no ted th at man y mo nth s were sp ent on  dev el opi ng  and  im prov ing  th e MPI versi on of th e cod e,  whi le su bst anti ally 
les s has  been sp ent on  th e OpenM P versi on.  If th e OpenM P versi on had  been fou nd to  perform as well as th e MPI versi on,  th en th e
reduced dev el opm ent ti me wou ld be a clear ben efi t, bu t ju st becaus e it  do es no t, it  is  un fai r at th is st age to  say  th at OpenM P canno t
perform as well.   In fact th e aut hors are op tim ist ic th at furth er im prov em ent can be ob tain ed  after mo re det ai led analy sis . For examp le
Bu ll [1] no ted th at th e !$OMP RE DUC TION claus e on  an Origi n20 00  is  exp en siv e. Th e current im plem en tati on cou ld po ssi bly  ben efi t
from  rewri tin g in  a way whi ch  reduces th e nu mber of reduct ion s.

Wit h th e abo ve com ments  in  mi nd,  it  is  st ill  po ssi ble to  mak e so me meani ngfu l com pariso ns for th is parti cular code. 

Fo r MPI 
•  Known to give good performance for large numbers of processors and for larger problems and on a variety of distributed

memory systems.
•  Portable across most (if not all) parallel systems.
•  Easier to understand how the data is distributed and where the time is spent.
•  Many tools available to assist the programmer.

Aga inst MPI 
•  Coding complex to read, write and maintain

Fo r OpenMP
•  OpenMP code is initially much easier to write, modify  and maintain
•  Once one code is satisfactory, it should be easy to parallelise other codes in a similar way

Aga inst OpenMP
•  Too easy to overlook necessary (or un-necessary) synchronisations

• Lack of tools inhibits quick program development

• Portability limited to subset of parallel systems with (virtual) shared memory.

7 Conclusions

Th e mai n con cl usi on  is  th at exp ect ing  to  be abl e to  pro duce a go od,  parall el  im plem en tati on us ing  OpenM P, wi th very li ttl e eff ort ,  is , in 
gen eral,    un real ist ic. Th e pro grammer mu st be aware of th e dat a man ag ement  is sues , and  kn ow when and  ho w to  con trol th ese exp licit ly .

Th e ot her con cern wit h th is cod e is  th at th e us e of Fortran 90 , parti cularly  th e array  in trin sics , whi ch  si mpl ifies  th e cod ing  con sid erab ly in 
com pariso n wit h th e Fortran 77  equ ivalen t, seems  to  hi nder im plem en tati on wit h OpenM P. However as no ted earlier, th e nex t release of
OpenM P wil l in clud e vario us enh an cem ents , in clud ing  (it  is  bel ieved) th e parall el is at ion  of th e Fortran 90  in trin sics .

It is  recogn ised  th at th ere is  mo re work to  do  in  th is parti cular im plem en tati on,  bu t th e aut hors are op tim ist ic th at go od performan ce is 
achiev ab le wit h no t to o mu ch mo re effort.
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Appendix - Systems and Software used

All of the results for this paper were produced on a 40 processor  (195 MHz, R10000 processors, each with 4Mb L2 cache) SGI
Origin2000 system at the University of Manchester. The timings were obtained under miser, using MIPSpro 7.3.1.1m and Irix
6.5.6m. The common compiler flags used for both MPI and OpenMP versions were:
f90 –64 –mips4 –O3 –r10000 –r8.


