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Abstract. In this paper we describe the steps involved, the effort required and the performance achieved in both MPI and OpenMP
implementations of a Fortran 90 finite element analysis code on an SGI Origin2000 using the MIPSpro compiler. We demonstrate that a
working OpenMP version is easier to write, and then explain how to overcome some restrictions of the first version of the APl to obtain
better performance.

1 Introduction

Finite Element Analysisis usedin awide variety of applications, including the design of aircraft and cars civil engineering condruction
projects the sudy of geological processes such as fault prediction and the sructural devdopment of bones in the human body. The
requirement to solve such problems with increasng detdl and in shorter timescales — either to reduce the overall project devd opment
time, or for example to permit a conaultant to provide aimog immediate feedback to a patient, has encouraged the devdopment of
paralld implementati ons, parti cularly based on iterative algorithms.

In an earlier pape Petti pher and Smith [5], it was shown that a paralld implementation using an element levd approach could achieve
very good results using MPI [3] on a Cray T3D. For this pape, the same code has been run on an SGI Origin2000, producing good
performance albdt on arelatively amal number of processors. The objective here is to investigate how well the same code can be
implemented using OpenM P [4].

2 The Codes

The codes, based on the preconditioned conjugae gradient algorithm for the solution of the linear system Ax=b, rely heavily on matrix
and vector operations and consequently map very well to Fortran 90, making extensve use of array syntax and array intringcs,
parti cularly MATMUL and DOT_PRODUCT.

Thebasic form of theiterative section of the conjugae gradi ent algorithm is:

iterations DO
iters=iters+ 1
u=MATMUL(A,p)
up = DOT_PRODUCT(r,r)
alpha= up/DOT_PRODUCT(p,u)
xnew = x + p*apha

r=r-uapha

beta= DOT_PRODUCT(r,d)/up

p=r+ p*beta

X = Xnew I after testing for convergence

END DO iterations



where A is the coefficientmatiix, p, u, r, X, xnew are all vectors and a pha and betaare scalars Further detdls are given in various texts,
but seein particular Freemanand Phillips [2], and Smith and Griffithg 7].

Us ng the element-based approach gives rise to repeated (onefor each of thefinite elements) dense matri x-vector operations with vectors
of length 60 (20 node bri ck elements, eachwith 3 degrees of freedom per node), and to operationswith vectors whose length matches the
number of equaions (The test case used for this pape had 8000 elements and 100840 equétions). However, this requires each of the
length 60 vectorsto be genaated by agather from the p vector, and theresult of the matrix vector calcul&ion to be scattered to vector u,
before generati ng the new solution vector. In condant giffness cases it can be arranged that the dense matrix is the same for al vectors,
20 the mat1i x-vector operations can be replaced by a dngle matrix-matrix computation, which permits the use of levd 3 BLAS routines
giving subgtanti al performance improvements.

Withthe diagond preconditioner included, and with rearrangement to reduce the three dot products to two which can then be performed
conaurrently the code looks like this

iterations DO
iters=iters+ 1
pmul = p(g)

utemp = MATMUL(km,pmul)

u(g) = u(@) + utemp

udiag = u* diag

dotpu = DOT_PRODUCT(pu)

dotuu = DOT_PRODUCT(u,udiag)

alpha= dotrdold/dotpu

Xnew = x + p*apha

r=r-uapha

d=diag'r

beta= alpha*dotuw/dotpu- 1

dotrdold = betar dotrdold

p=d+ p*beta

X = Xnew | after testing for convergence
END DO iterations

Thekey differenceis the replacement of the statement:
u=MATMUL(A p)
where A is alarge sparse matrix, with

pmul = p(g)
utemp = MATMUL(km,pmul)

u(g) = u(g) + utemp

where km is asmall dense matrix suchthat the sum of al km is equivalentto A, and pmul and utemp are matrices containing detals for
al elements (Itis posdble to putthese 3 satementswithin a loop over the elements, with pmul and utemp then being vectors but the
matri x verd on is used not only to permit matrix-matrix computaionwhen km is the samefor all elements, but also to reduce the amount
of communicationin the MPI implementati on — seethe MPI section.)

3 Reproducible Timings

The SGI Origin2000 sysem on which the work was performed is a heavily used production system, is designed to maximise use of
resources by sharing processors and memory wherever poss ble. This means in parti cular that an individual processmight:

*  share processors with processes from other users on atimeshaing basis

e share memory on anode with other processes,
and

e codemight migrate to other processors;

e datamight migrateto other processors.



A conseguence of thisisthatit is difficult to ensure that an individual job usesthe same resouraes in the same way in different runs and
consequently timings between different runs can vary consdeably. Exclusive access or possbly partitioning with cpu sets would be
ided , but both require system admini srator control, and neither are practical options in this case.

A mechanign for ‘nailing’ jobs to reserve processors was devised by Graham Riley and Mark Bull while in the Centre for Novd
Computing at the Universty of Mancheser (Mark Bull has now moved to EPCC). This guaranteed exclusve access to progessors, but
notto memory, and thus alleviated some but not all of the problems. Subsequently SGI now provide the miser utility which provides
smilar fundionality (and other features). As this is supported by SGI and does not require peda system privilege.it seems the best
lution for timing codes on the Origi n2000. Even 0, there can be variation between runs— typically of up to 10% (but nearly 40% has
been observed. The variation is largest on aheavily loaded (in terms of memory and 1/0 as well as CPU usage) system, particularly for
the short runscarried out here.. However, in light of the reaults obtained o far, such variation doesnot alte the general interpretati on with
respect to acomparison between the MPI and the OpenM Presults No attenpt has been to average results — figures quoted are typically
from a sngle run, athough reasonable confidence is obtained from amilar run.. For the testing reported on here, miser is currently
resridedto 16 proaessors, so no figuresare given for more than 16 processors

4 The MPI Implementation

A's desaibed in Pettipher and Smith [5] agmple sraegy is adopted for the data di stri bution. Cond der again the three gatements

pmul = p(g)
utemp = MATMUL(km,pmul)

u(g) = u(g) + utemp

km is amall (60x60), =0 is replicated on all processors;
p and u (and the other vectors) are di gtri buted with one di mensional bl ocki ng;
pmul and utemp (60x8000) are digributedin bl ocked col umn format

Thus the MATMUL inval ves no communication itself, but there may be substantial communication for the gather and scatter. However,
asthedatafor all elements (the columnsof matrices pmul and utemp) is stored, there is only one gather and one scatter for each PCG
iteration — sped al gather and scatter routines were written to hande this. The disadvantage of using matrices for pmul and utemp (and
elsavheae within thewhole codd), indead of temporary vectors, reused for each element, is the additional memory required, but this has
not yet been a problem.

On the SGI Origin2000, the following resul ts were obtained for aproblem with 8000 elements and 100840 equaions and the number of
PCG iterationslimitedto 30 to reduce the total time. In a more redlistic run, the iteration count would be much higher reaulting in the
PCG time bei ng a higher proportion of the total time.

Processors 1 16
Total time 17.8 17

PCG time 14.6 1.0

PCG speadup 10 14.6

PCG performance - %peak 31% 27%

The PCG performancefigureis based on an esimate of the number of floaing point operations performed in this section and the peak
performance of 16 processors..

Thexe reallts seem very encouraging, and are as expected in light of earlier work on di gributed memory sysems[5)].



5 OpenMP Implementation

One of the attractions of the shared memory parallelisation approach using OpenMP is the opportunity to perform the work
incrementally, without the major rewriting associated with message passing codes. It is also expected that the final code will be
much closer to the original code and therefore easier to understand, maintain and adapt for different problems. Thus the development
of the OpenMP implementation started with the original Fortran 90 code. However, knowledge gained during the message passing
implementation is relevant for any other parallel implementation — the key areas to be parallelised are still the same and issues such
as the use of BLAS routines instead of Fortran 90 intrinsics should be investigated. What was not so clear at the start of thiswork is
the extent to which the data distribution should be managed by the programmer - the Origin2000 is a distributed memory machine
and remote data access is more expensive than local. How well does the compiler cope with this and how much must the
programmer control?

Autopar a leli stion

The MIPSpro compiler (version 7.3.1.1m was used) provides autoparallelisation by the use of the -apo compiler flag. This attempts
to parallelise DO loops within the source code by use of the OpenMP directives. Currently, OpenMP version 1 isimplemented by
the compiler.

It will also consider unrolling Fortran 90 array syntax and then parallelising the resulting code (for example for the initialisation of
array A=0.0). However, the -apo flag will not convert Fortran90 intrinsics into parallelisable DO loops - thus MATMUL and
DOT_PRODUCT are not parallelised.

(It is noted in passing that the use of these intrinsics in a OpenMP parallel region means replication of work in that each thread will
perform the complete operation. There is on-going discussions about whether this will change with OpenMP-2)

The -apo flag will also honour the user's OpenMP directives. Alternatively, the user may use the -mp compiler flag to have only
their own directives used.

(Itisalso mtedthat justusng—apo gave no measurabl e performance increase, whether usngarray intringcsor BLAS routine.)
Usng BL ASRoutines

As noted above, the F90 intrinsic MATMUL is not auto-parallelised. The following options were therefore considered:

«  replacing the intrinsic with explicit OpenMP DO loops
» theuse of the Basic Linear Algebra Subprograms (BLAS), particularly the level-3 BLAS dgemm.

To use the BLAS, the user has to link with the relevant library. The obvious choice is of -Iblas and -Iblas_mp but alternatives could
be -Iscs blas, -Iscs and -Inag for the former or -Iscs_blas and -Iscs mp for the latter.

The -Iblas links the object codes with a serial implementation whereas the -Iblas_mp links to a parallel version of the required BLAS
routine. It is not stated in the SGI documentation how the parallelisation of the latter is controlled. It is noted that under miser, -
Iblas_mp will use (up to) the number of processors given in the miser command line.

Note also that the use of -Iblas_mp for callsto BLAS which are already in a parallel region leads to a significant decreasein
performance, as compared to the use of the serial implementation of the BLAS in that parallel region. It is believed that thisis due
to each thread in the parallel region spawning additional threads which are then timesliced resulting in an excessive number of
threads and decreased performance.



Codelmplementation

As indicated in previous sections, the major computational part of the code is the matrix multiplication part of the PCG iterations.
Consider the following DO loop format:

DO i€l =1, nels
pmul(:.iel) = p(g(:.iel))
END DO
utemp = MATMUL (km,pmul)
DO el =1, nels
u(g(:,iel)) = u(g(:,iel)) + utemp(:,iel)
END DO

! Gather

| Scatter

The question is how best to parallelise with OpenMP?

As MATMUL will not parallelise, this should be replaced, either using the parallel BLAS routine, dgemm, or an explicit DO loop

with OpenMP directives. Both were tried:

dgemm mp Explicit
Procs Time Speedup Time Speedup
1 6.3 10 9.9 1.0
2 3.3 19 4.7 2.1
4 1.9 34 2.5 4.0
8 10 6.1 12 8.0
16 0.6 10.2 0.6 15.3

Thus the time on 16 processors is the same whichever is used, but dgemm is better cache optimised on a single processor (no
attempt was made to do any cache optimisation in the explicit version). It appears therefore that the dgemm routine is preferable, but
there are implications which should be born in mind.

First, linking with the parallel BLAS library as used here, might limit the use of serial BLAS routines as mentioned above.

Secondly, the performance of any code on the Origin2000 depends on where data resides. (This is true of any NUMA architecture.)
Although it is tempting to incrementally add OpenM P statements to parall€elise time consuming loops, this may not be the optimal
solution. It is important to consider how the operating system determines the placement of data. On the Origin2000, the default is a
"first touch™" policy - the thread that first touches a data item (that is not already placed) will force the operating system to place the
page containing that data item on the memory associated with that thread (which may or may not be the physically closer memory).
Furthermore, by default, data will not migrate between memories as a result of the program execution. (However, it may change
due to the operating system paging out the program completely and then paging it back in but on different threads and memories.)

Given that the cost of accessing data from distant memory is significantly higher than accessing data from a processor’s local L2
cache, the initial data placement can have a significant effect on program performance. For a code that has parallel regionsit is
therefore important to ensure that the data is distributed satisfactorily so that each thread is accessing data as locally as possible. This
is achieved by parallelising the initialisation part of a code as well as the time consuming parts.

For example, in this code, the main time was spent in the matrix multiplication of km by pmul to form utemp. Merely converting
the MATMUL to three DO loops and parallelising them will not lead to maximum performance. As the first time the variables km,
pmul and utemp are touched is another matrix multiplication, this can be parallelised in a similar fashion to ensure maximum
performance for the key matrix multiplication section. Given it is not known how dgemm will force the data to be distributed, if an
explicit OpenMP implemementation is used for the main matrix multiplication section it should also be used it in a similar way for
the initialisation section too.



This point indicates the importance of the data management which is potentially under the control of the programmer. (It is possible
to take this further till by using SGI directives to place data on particular memory and code on particular threads, but this option
was not considered due to issues of portability.)

The gather loop above can be easily parallelised with OpenMP directives:

ISOMP PARALLEL DO default(none) &
ISOMP PRIVATE (iel) SHARED (nels, pmul, g, p)
DO iel =1, nels
pmul(:,iel) = p(g(:,iel))
END DO
ISOMP END PARALLEL

The scatter, however :

DO el =1, nels
u(g(:,ie)) = u(g(:,iel)) + utemp(:,iel) ! Scatter
END DO

cannot easily be parallelised because of the potential (and actual) dependency in assigning elements of vector u.

The answer to this should be to use the I$OMP ATOMIC directive, which alows the update to be performed in a controlled and
parallel manner. However no performance improvement has been obtained using this directive, in comparison with a seria
implementation of this loop. It is thought that the synchronisation costs negate any increase in performance due to parallelisation.

In order to circumvent this situation PRIVATE temporary arrays can be used for u on each thread which are then brought together in
a REDUCTION-type operation. (Note that OpenMP version 1 allows only scalars in the REDUCTION clause). This gives (noting
that it is already in a PARALLEL region):

my_id = omp_get_thread_num()
ISOMP DO

doj=1, neq

do i =0, omp_get num_threads()-1
dist_u(i, j) = u(j)
end do

end do

ISOMP END DO

ISOMP DO
doiel =1, nels
doi=1, ndof
dist_u(my_id,g_g(i,iel)) = dist_u(my_id,g_g(i,iel)) +g_utemp(i,iel)
end do
end do
ISOMP END DO

ISOMP DO
doj=1, neq
do i =0, omp_get_num_threads()-1
u(j) = u(j) + dist_u(i, j)
end do
end do
ISOMP END DO



Although this code removes the synchronisation cost of each update to the elements of u, it does so at the cost of additional memory
requirements (for dist_u) and copying arrays. (There are also 3 barriers, one at the end of each OMP DO construct.)

Once all the time consuming loops (gather, multiply, scatter) have been put into OpenMP constructs, it is necessary to consider
simple transformations of the code in order to minimise synchronisation costs. Examples include, creating the largest possible
PARALLEL region, using as many NOWAIT clauses with DO loops as possible, and moving all sequential parts of the code into
one SINGLE clause (or replicating work, where possible). Thus the final OpenM P code does not map simply onto the original code
with just additions of OMP directives.

Whereas the compiler is good at basic code manipulation for optimisation on a single node (eg prefetching) there is no support for
rearranging OpenMP constructs. Furthermore, there are often several alternative methods of using OMP directives to obtain the
same result. The choice of ATOMIC, CRITICAL and SINGLE for the updating of u, for example.

Other parts of thecode

In general, it isrelatively easy to parallelise the rest of the code, but the use of Fortran 90 array syntax and intrinsics does seem to
require particular care. For example, the initialisation statements:

diag_precon=0.0
oldis=0.0

tensor = 0.0
loads = 0.0

where tensor isa 3D array and all the rest are vectors. All of these statements were parallelised, but as separate loops (no loop
fusion). If aDO loop is used instead, a single parallel loop is generated, reducing parallelisation overheads.

Reaults for OpenM Pimplementation:

Asindicated above, the scatter operation is crucia to the good performance of this code, and as yet this has not been fully dealt
with. The following results were obtained using the PRIVATE temporary arrays as mentioned above:

Procesors 1 16
Totd time 17.4 5.2

PCG time 15.2 19

PCG speedup 10 8.0

PCG performance - %opeak 30% 15%

Thus the single processor times roughly match those for the MPI version, but for 16 processors, the performance in the PCG section
is roughly half as good.



6 Comparison Between MPI and OpenMP Implementations

Thekey issue in the comparison of thereaults is that on 16 processors, the OpenM P verson is about twice as dow as the MPI verson in
the PCG section. (The OpenM P version is alsod ower for the ather parts of the code but this will be lessimportant for morerealistic runs
when mogt of thetimewill be spent performing the PCG.)

However it should be noted that many monthswere spent on devd oping and improving the MPI verson of the code while subgtantially
lesshas been gpent on the OpenM P verson. If the OpenM P verson had been found to perform as well as the MPI versgon, then the
reduced deved opment time would be a clear ben€fit, but just because it does not, it is unfar at this sage to say that OpenM P cannot
perform as well. In fact the authors are optimigtic that further improvement can be obtained after more detdled analyds. For example
Bull [1] noted that the !$OMP REDUCTION clause on an Origin2000 is expengve. The current implementation could possibly benefit
from rewriting in away which reduces the number of reductions

Withthe above comments in mind, it is gill poss ble to make some meani ngful comparisons for this parti cular code.

For MPI
*  Known to give good performance for large numbers of processors and for larger problems and on a variety of distributed
memory systems.
e Portable across most (if not al) parallel systems.
e  Eadier to understand how the data is distributed and where the time is spent.
e Many tools available to assist the programmer.

Againg MPI
e Coding complex to read, write and maintain

For OpenM P
e OpenMP codeisinitially much easier to write, modify and maintain
*  Onceone code is satisfactory, it should be easy to parallelise other codes in a similar way

Againg OpenM P
*  Too easy to overlook necessary (or un-necessary) synchronisations
e Lack of tools inhibits quick program development
*  Portability limited to subset of parallel systems with (virtual) shared memory.

7 Conclusions

The main cond us on is that expecting to be abl eto produce agood, paralld implementation using OpenM P, with very little effort, is, in
genad, unredigic. The programmer mug be aware of the datamanagement issues, and know when and how to contral these explicitly.

The other concern withthis codeis that the use of Fortran 90, parti cularly the array intringcs, which S mplifies the coding consdeably in
comparisonwiththe Fortran 77 equivalent, seems to hi nder implementati on with OpenM P. However as noted earlier, the next release of
OpenM P will include various enhancaments, including (it is believed) the paralldisaion of the Fortran 90 intringcs.

It is recognised that there is more work to do in this parti cular implementation, but the authors are optimigtic that good performance is
achievable with not too much more effort.
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Appendix - Systems and Software used

All of the results for this paper were produced on a 40 processor (195 MHz, R10000 processors, each with 4Mb L2 cache) SGI
Origin2000 system at the University of Manchester. The timings were obtained under miser, using MIPSpro 7.3.1.1m and Irix
6.5.6m. The common compiler flags used for both MPI and OpenMP versions were:

f90 —64 —mips4 O3 —10000 —8.



