
1

Early Experiences with The 512 Processor
Single System Image Origin2000

Robert B. Ciotti (ciotti@nas.nasa.gov),
 James R. Taft (jtaft@nas.nasa.gov),

Numerical Aerospace Simulation (NAS)
NASA Ames Research Center, Moffett Field, CA 94035

Jens Petersohn (jkp@sgi.com),
SGI

1600 Amphitheater Parkway
Mountain View, CA 94043

ABSTRACT: NASA Ames installed a 512-processor single system image Origin 2000 system in
October 1999. Over the past several months, NASA Ames has worked to develop operating
system support, a batch-scheduling environment, programming techniques and libraries that
serve to maximize the utility of large shared memory supercomputers. Early results suggest that
large shared memory machines are viable parallel supercomputers and serve to provide a
simplified and more effective programming alternative to MPI while also reducing the
communication latency in parallel applications. Sustained CFD simulations exceeding 60
gigaflops or 13 times the performance of a 16-processor C90 system were achieved. MTTI and
Gross Availability are shown and compared for several different systems and show good
correlation between part counts and reliability – reliability of a 256p Origin2000 system is shown
to be better than a 16p C90 vector system.

1 Introduction

NASA Ames installed a 512-processor Origin2000
system over the fall of 1999. This system was known to
be a one of a kind and would never be offered as a
product by SGI, but would serve as a prototype system
to develop software (applications, batch systems, and
operating systems) in preparation for the next
generation Scalable Node (SN) system available in
2000. Further, it would serve as a proof of concept
machine to show whether large shared memory
systems could be built and operated at all.

Even though the Origin2000 architecture was capable of
supporting configurations larger than 256 processors,
there were several risk areas in pushing the technology
to 512. 512 is the largest configuration this generation of
machine could reasonably support, due to the
complexity, latency, reliability, and cost

Significant technological risk was associated with the
operating system and also in untested transistor logic
that would be required in routing. Other issues such as
the physical layout or the PROM topology discovery
code were also significant hurdles to overcome.

All of these issues were successfully dealt with over the
course of several months during the summer of 99. The
prototype system built in Eagan consisted of 256
250mhz R10k processors and 256 300mhz R12k
processors and was assembled in August 1999. 2 256-

processor 300khz R12k systems were installed at NAS
in July, waiting to be cabled together as a 512 scheduled
for late September. This provided time to break in the
systems and shake out problems that normally occur on
any new system.

The 512-processor system came up in the first week in
October and was soon running benchmarks (Linpack
and Overflow). There were a few initial problems with
stacklimits and MLDSETs. but these issues were quickly
dealt with and the system was made available for
application development within the first week.

2 Industry Trends

Generally, we see a trend in forming in shared memory
computer systems. Computer industry momentum is
toward larger CPU count symmetric Multi-Processing
(SMP) systems built around Non-Uniform Memory
Access (NUMA) memory sub-systems. Vendors have
been forced to the NUMA approach for both technical
and business reasons. Technically, the high clock rates
found in systems today require very short point-to-point
hardware communication paths. Bus or crossbar based
memory designs are either too costly or simply cannot
scale to large CPU counts within the physical space or
path lengths required. NUMA is the technical solution to
this problem, and will likely dominate commodity parallel
system designs in the coming decade.

From a business perspective, vendors like the building
block approach possible with NUMA designs in that

2

large systems are simple amalgams of many smaller
identically manufactured building blocks that are
connected together via inexpensive cables. This offers
economies of scale in the manufacturing process and
assures the volume necessary to sustain a viable
commercial enterprise.

Having an operating system that can effectively deal
with hundreds, or even thousands of processors is
another story and represents the most significant
technical challenge that the vendor community faces in
building these systems.

Supporting shared memory in hardware without cache
coherency is trivial. This functionality should be pushed
out to the network interface and even standardized
across vendor platforms. Of course, cache coherency is
advantageous for application development in many
instances and Origin2000 has shown it possible on
large scale systems.

The decision to pursue this technology trend was based
on benchmarking that demonstrated clear performance
and price performance advantages over clustered and
MPP systems (e.g. SP and T3E) for NASAs large scale
computing problems. Further, SGI was and still is the
leader in delivering high processor count, ccNUMA
technology to market.

2.1 General Overview

The Origin2000 system is a cache-coherent non-uniform
memory access (ccNUMA) computer. That is, all
memory within a Single System Image (SSI) is globally
addressable and cache coherent for all processors
within that SSI. However, the processors far away from
the memory they access (i.e. many hops) experience
greater access latency than those processors that are
close to their memory. In general, this latency is
approximately 100ns/hop + 485ns. The best-case hop
count on any Origin2000 system is 0 hops, and the
worst-case hop count in a 512p system is 10 hops. So,
bringing a clean/unshared (i.e. no invalidation
necessary) cache line from memory into the processor
can take anywhere from 485ns to 1485ns. This resulting
factor of over 3x in latency differential has a major
impact on how the operating system works, what
applications must do to efficiently use the system and
finally, how the batch queuing system allocates
resources to user jobs.

However, the worst-case shared memory access latency
is 10x faster than explicit messaging via MPI on Origin
architectures. It is over 40x faster than MPI on clustered
system like the IBM SP, Beowolf, and others. The
efficiency of shared memory programming in terms of
simplicity and latency make it a highly desirable and

productive programming environment. It should also be
noted that we observe large SMPs or ccNUMA systems
provide the best platform for maintaining the highest
level of algorithmic efficiency and parallel efficiency in
many of our applications. For a good discussion of this
see “How Moderate-Sized RISC Based SMPs can
Outperform Much Larger Distributed Memory MPPs”,
Pressel, Sturek, Sahu, and Heavy 1.

3 ccNUMA Memory Management

3.1 Parallel Programming Issues on ccNUMA

Any program, parallel or not, requires fast access, in
terms of latency and bandwidth, to its local data,
memory that is used primarily by the local execution
thread. How sensitive a program will be to the access
performance is also dependent on the program’s use of
memory latency-hiding hardware assistance and the
quality and capability of such hardware. Clearly, the
more effective the program’s utilization of those latency-
hiding techniques is, the better the program will perform
if sufficient bandwidth is available.

CcNUMA systems are very good at hiding the details of
which processor the execution thread is running on and
exactly where the memory is that the thread requires.
They greatly simplify applications in that much code is
typically devoted to I/O processing or other tasks that
take an insignificant amount of time. Nonetheless, the
major computational kernel of highly parallel applications
with hundreds of execution threads and thousand of
memory pages, can very quickly create contention,
introduce excess latency, and reduce effective memory
bandwidth when thread and memory locality is not
properly managed. Each of these factors typically have a
major impact on scaling and overall performance.

Given that the current ccNUMA architecture from SGI
supports two processors per memory unit (node), any
data that is shared between more than two threads will
experience at least half the smallest inter-memory
latency possible. As the number of threads using a given
piece of data grows, so will the minimum average
latency. Combined with the previous argument, it
becomes clear that (1) a program must consider the data
it is sharing between threads carefully, and (2) such data
should be laid out in the available memory optimally.

Therefore, data decomposition for arrays that are
accessed heavily and in parallel by many processors
must be carefully placed in the memory system as
carefully as one would do in an explicit messaging code.
Further, the CPU executing the thread should have the
most direct access possible to the memory containing

3

the local data. Lacking this co-location will not prevent
proper execution of the program on the ccNUMA
architecture, but it will result in poor performance and
poor scaling under most circumstances. In the case of
repeated runs of an application, random placement of
execution threads and memory results in large variations
in application run time as large as 2-3x.

Optimally, frequently accessed arrays contain strictly
thread local data, data that is not shared with any other
thread. Conversely, programs will scale better if the
globally shared data arrays are the least frequently
accessed, assuming the parallelization is not limited by
algorithmic reasons. Put another way, the most
frequently accessed data should be accessible with the
least latency. Careful control of this characteristic will
result in improved performance.

Much of the work performed over the last two years on
the large Origin systems is in ensuring the accurate and
deterministic placement of data arrays, ensuring that
threads don’t migrate from processor to processor, and
partitioning the machine in such a way as to prohibit one
job interfering with other jobs running simultaneously on
the system.

3.2 Problems associated with memory layout

3.2.1 Program Internal Causes

No operating system can anticipate the memory layout
needs of every program; in fact it cannot really anticipate
the needs of any program. The operating system in use
on SGI ccNUMA systems (IRIX) is virtual memory based
(VM). As a result, physical memory is committed only to
the program’s memory space when the program first
uses it. A key component of a good memory domain
distribution is largely a function of the order in which the
program “touches” its memory unless other means,
external or internal, are used to control the layout.
External means are usually fairly coarse in their nature
and do not permit the degree of control that even simple
ordering of memory “touching” will produce.

3.2.2 Program External Causes

In order for a program to place its memory domains
according to the most optimal method successfully, the
memory resources that the program eventually requests
must in fact be available. In a shared system, this may
not be the case. Even in a controlled environment that
attempts to prevent oversubscription (job management
system), other programs may miscalculate resource
requirements and occupy memory resources that the
program anticipated as being available.

Another factor that may break the optimal memory layout
is “thread migration”. The SGI ccNUMA system can
reschedule executing threads on other CPUs, which are
not local to the current memory. The operating system
attempts to prevent this from occurring, but is not always
successful during phases of local or global CPU over
subscription.

3.2.3 Resource Allocation and Locality

It is desirable to have the access domains and execution
threads placed on the system in such a way that the
distance to each domain is minimized. This will
guarantee the best possible latency for accessing each
domain. In most cases neither the user nor the operating
system will attempt to control this placement, usually
resulting in a sub-optimal arrangement. The optimal
scenario requires that the application specify its optimal
thread and memory domain placement to the job
management system, the job management system then
guarantees these resources to the application. Then the
operating system guarantees those resources to the job
management system. When the application finally runs,
the operating system provides support to the application
in its desired thread and memory access domain
placement.

3.2.4 Solutions for Locality Problems

Provided that a program performs the first touch of it’s
memory in a way that insures execution threads are
local to the data they will access, an optimum memory
layout will result if the operating system can guarantee
the availability of the resources provided and guarantee
that the memory resource is committed where it was first
touched.

In the earlier IRIX releases, design issues and errors in
the operating system components that select memory for
the pages that a program touches and schedules
threads to processors caused inefficiencies and sub
optimal thread and memory placement. The operating
system would not select the nearest memory in case the
local memory overflowed. This resulted in degraded
performance and interference with other programs
running on the same system because the memory on
nodes ostensibly assigned to those other programs
would be erroneously depleted. The operating system
would also frequently schedule the parent thread, not the
newly created child thread, to a different processor that
was not local to the current memory during thread
creation. Threads also did not effectively migrate back to
the processor closest to the memory. These issues
created significant performance issues and resulted in
significant run-time variations.

4

Several enhancements first developed at the NAS
Facility have been incorporated into the main IRIX
operating system release. These features attempt to
guarantee consistent memory and thread placement and
to prevent undesired memory allocation/stealing from
occurring. First, a new feature that allows the job
management system to provide a set of resources and
communicate those resources to the operating system
has been added. The operating system will then
guarantee these resources to the job that is then
attached to those resources. This is effective for both
CPU and memory. The feature is called cpusets and
memory limited cpusets. Put another way, a group of
CPUs (say 20) can be allocated to Job. Those 20 CPUs
and their associated memories are walled off from other
Jobs running in the system. Should the job try to allocate
pages beyond the memory capacity in those 20 CPUs, it
will receive an error from the operating system and fail in
the memory limited cpuset. Further, the job can then
manage which threads run on which CPUs in a
controlled way.

Other modifications force the operating system to be
much more thorough in attempting to commit a page
where it was touched. Only if it becomes impossible to
do so will the page be committed somewhere else. In
that case, the operating system will attempt to locate the
nearest possible source of available pages to satisfy the
request.

3.2.5 Improving Locality Issues

Once the granted resource are indeed guaranteed,
several tools exist in the operating system to control the
data access domain layout more carefully for each
individual program. These tools exist as an extension in
the page allocator component of the operating system
IRIX and are known as Memory Locality Domains
(MLDs) and Policy Modules (PMOs). Memory locality
domains permit the user to create a blocks of memory
that can be placed manually (specifying the physical
target locations) or automatically, minimizing the
distances in latency space between them for example.
The Policy Modules then permit the user to attach data
regions within the program to these memory blocks in
several ways. The memory for a data region will be
allocated out of the specified memory blocks (MLDs) per
the policy established, until the memory in those memory
blocks is exhausted. Several types of policies exist, the
most notable being the “first touch” and “round robin”
policies. The “first touch” policy will allocate memory
from the nearest memory block specified via the MLD.
Round robin will distribute subsequent allocations in time
across the memory blocks in a round robin fashion.

Lastly, the user may also lock each thread to a specific
CPU. This will prevent any type of thread migration from
occurring.

These tools when used properly give the user very fine
grain control over the exact placement of the access
domains of the program. These tools should be used to
achieve the maximum possible performance. The MLP
Library routines described later in section 5.3.4 make
use of these features and can effectively abstract this
interface back up to the FORTRAN level.

The detailed programmatic interfaces are described in
the man page mmci(5). Some of the functionality is also
available via dplace without modifying the program itself.
The man page dplace(1) describes the functionality of
this tool.

The MLDs and PMOs are strictly limited by the cpuset
mechanism described earlier when selecting physical
memories (and processors). If logical placement is used,
the selected memories will be confined to the memory
limited cpuset. If physical placement is used and is
outside of the bounds defined by the memory limited
cpuset, an error will be returned.

3.2.6 Role of Job Management in Locality Issues

For optimal performance, the job management system
(at NAS we use the Portable Batch System – PBS) must
have an awareness of the physical topology of the
machine. Due to the way the system discovers its
configuration at boot time, the logical numbering of the
CPUs from 1 to N does not imply that CPU #15 is
physically close to CPU #16. This physical topology
must be discovered from the router graph topology in
/hw using a system call. Then, when a job specifies the
number of processes and the amount of memory it
requires, PBS determines the minimum number of nodes
(a node is 2 processors and 600mb of memory) required
to satisfy both the processor and memory requirement.
PBS then tries to allocate physically close groups of
processors as a memory limited CPUSET. This
CPUSET is then passed on the job where is become the
responsibility to the job the deal with its memory locality
issues and the operating system to enforce resource
allocation and ensure proper and deterministic behavior
of memory allocation and thread placement.

Clearly, the functionality of the Job management system
could be extended to deal with such resource allocation
issues in a more dynamic way, or to better discover a
jobs actual resource requirements, but is a problem of
some complexity and in need of more research.

3.3 Other Enhancements

As most virtual memory based system do, IRIX will
share text (executable code) between different programs
executing. This becomes a problem for system libraries,
which can be quite large. The first program to use a

5

specific library will cause that library to be copied (at
least partially) into memories assigned to that program.
Although memory limited cpusets will in-fact remove that
text again if memory resources become exhausted in the
granted set of resources, this consumes system
resources in terms of disk I/O and processor cycles.

A solution locally developed at the NAS Facility is to
preload the most commonly used library texts into a
memory area set aside for this purpose. This will prevent
the text from being copied into an area of memory that is
part of a set of resources granted to a job. The overhead
of removing and recopying the library text is thus
avoided.

4 Reliability

Reliability of these large shared memory systems is a
key concern. As in any complex system, at some point,
there become too may parts to reliably operate the
system for any reasonable length of time. Our target
MTTI for the 512-processor system is 7 days.
Historically, production supercomputers have at NAS
have exhibited MTTI on the order of 14 days (figure 1).

Several systems were analyzed over the past 1 to 2
years (depending on the system) for MTTI (mean time to
interrupt) and GA (gross availability) and then compared
to the 512p Lomax system.. The systems are
continuously monitored 24 hours/day, 365 days/year for
operational status. Detailed logging information is
collected on all outages with an effort made to identify
the source of the outage and log it. The duration of the
outage is tracked and updated. Using the data collected,
we define MTTI to include only unscheduled interrupts
caused by:

• hardware failure
• software failure, hang or panic
• unknown cause

We do not count unscheduled interrupts caused by:

• tape device failures or hangs
• NFS failures or hangs

Further we do not include scheduled interrupts such as

those for:

• dedicated time
• preventative maintenance

This particular treatment of the data provides relatively

even ground for comparing several different machines,
both parallel and vector, that are in production or
research use at NAS.

First off we have the traditional Cray C90 vector systems
(figures 1 and 2). These systems are viewed as reliable
workhorse machines with acceptable MTTI and uptime
characteristics.

6

Shown in the X-axis is the number of days prior to the
most recent outage. In figure 1 we see that the last
recorded outage occurred on 4/18/00 with data
extending back over the previous 540 days. Shown in
the Y-axis is the number of days the system stays up

without an unscheduled interrupt with the up triangles
marking the peak number of days up. The x-axis below
the up-triangle marks the date of the outage. Also shown

is the “mean time to interrupt” or straight average for the
entire time period plotted. In figure 1, the average over
the past 540 days was 14.5 days between unscheduled
interrupts. Also included is the 10 event running window
average, averaging the previous 5 and next 5 interrupts.
The MTTI is also noted in the legend (14.55 for figure 1)
along with the maximum number of days without
interrupt (70.6 days for figure 1).

We see that the reliability data is directly correlated via
the complexity of the two machines. Vn has twice the
number of processors, roughly twice the number of I/O
components and 4 times the memory as compared to
Eagle, yet roughly ½ the MTTI (14.5 vs. 29.9 days). As

expected, this strong correlation holds for all systems
that were analyzed.

Figures 3 and 4 show a 256p Origin2000 system
(Steger) and a 512p Origin2000 system (Lomax).

Again we show good correlation between part count and
MTTI, with the 256p at 9.27 and the 512 at 4.9. However
it is meaningful to point out the environments in which
these machines operate and that the role operating
system stability has a major impact. From approximately
9.5 months ago (-285 days on figure 3), the 256p
origin2000 Steger was transitioned from a “research and
development” platform to a “production” resource. The
approach to managing the system changes from
aggressive integration and testing of new software, to

conservative integration of feature and function that are
well tested in dedicated time and only put into the
production environment when know to work well. As
shown the running average MTTI moves into the 20+
day range with the MTTI over the period besting that of
the 16 processor C90 (table 2) at 21.7 days vs. 14.9
days. Additionally, as problems with the operating

7

system are located and fixed a substantial reduction in
software interruptm rate is realized.

Figure 5 show MTTI data for a 64p Origin2000 (Hopper).
system. This figure shows repeated outages in the -240
day range, with many failures occurring within a
relatively short period of time. MTTI seems to still
correlate well with figures 3 and 4 hopefully sustaining
their upward trend. Figures 6, 7 and 8 are 3 additional

64p Origin2000 systems that also shown as additional
background data points.

For completeness, Figure 6 shows MTTI data for J90
classic processor systems. The J90 cluster (Newton)
consisted of 4 system, clustered together as a 16
processor system, a 12 processor system, and 2- 4
processor systems for a total of 36 processors.. Data for
this cluster was not broken out by individual system,
however, with failure rates being driven by
complexity/part count, the data should give some
indication of reliability. The data show a surprisingly low
MTTI with a relatively high number of hardware failures
(table 1).

Table 1 provides detailed data on several outage
categories. One needs to be a little careful in a strict

interpretation of the data as presented. Often it is difficult
to determine the exact cause of a system crash, whether
unwarranted software panic, or one the result of a failure
in hardware. An effort is made to determine and log the
cause after the fact and as such the data should provide
good trend information and an accurate picture of
combined hardware/software MTTI. Table data in
presented as follows:

• Software Outage - Unscheduled outages typically
caused by operating system panics, or hangs where
the system is partially (or not) usabel and must be
re-booted to clear the problem.

• Hardware Outage – Unscheduled outages where a
hardware cause can be traced to.

• Other Caused Outage – Other cause that may or
may not be system related, such as an analyst
causing a reboot by accident.

• Tape Caused Outage – On VN in particular, there
are D3 tape drives that fail on a daily basis. To clear
these failures and get the tape system back to
operational, the system may need to be rebooted.
For an even comparison we choose to exclude
these from the general hardware/software MTTI.

• NFS Caused Outage – The Origin systems are
operated in a cluster environment. Frequently, NFS3
will hang and tracking down the source (whether
client. Server, or network inbetween) is problematic
as best.

• Network Caused Outage - Usually resulting from a
problem in the network interface that requires
replacement or reboot to clear.

• Unsched Facility Shutdown - Outages related to
power failures , earthquake, cooling or other facility
related problems.

• Sched Dedicated Time – Time set aside in advance
for analysts to perform such tasks as software
development and testing, performance testing, or
application development.

• Sched Preventative Maint – Time set aside in
advance for hardware maintenance of the system.

• Sched Facility Shutdown – Time set aside in
advance for a facility related outage.

• System up with problem – Time a system is up and
generally usable, but with a problem that is effecting
some fraction of users. If the system is subsequently
rebooted because the problem worsens or is

8

necessary to clear the problem, an outage will be
indicated the appropriate category above.

• System up without problem – Time the system is up
an available to run user workloads.

• Total of All Outages – Aggregates all outages over
the given time period, including both unscheduled
and scheduled. This probably the most relavent to
the general user community as they often do not
rally care why their tool is not available, just the fact
that is is not.

• Total All Unsched Outages - Aggregates all
unscheduled outages over the given time period.
Indicates those failures that are out of the control of
the analysts.

• Total of HW/SW Outages – Aggregates hardware
and software outages for the purpose of comparing
different systems in this paper.

Table 1 data has been collected over the past years as
available and should be contrasted against that in table
2 which provides the same analysis, but only from 8/99
forward. Several conclusions are made from the
provided data:

• The data show that the 256p processor Origin2000
system is more reliable than the 16p C90 system in
MTTI and gross availability. The represents the first
system at NAS that has outperformed a C90 in
reliability, cost, performance, and price performance.

• IRIX operating stability has improved substantially
over the past 3 years on all systems. IRIX reliability
was one the most significant concern NAS had in
moving into the Origin2000 project. Experience with
the IRIX Operating system on Power Challenge
Arrays had shown unacceptable stability. It is quite
an accomplishment that this reliability problem has
been fixed.

• Origin2000 hardware reliability has improved
substantially over the past 3 years. Systems still
seem to go through fits of outages, where a given
system will experience multiple outages in a short
period of time before stabilizing. It is believed that
better tools are necessary to monitor, track and
diagnose system problems as they occur. We are
told that there is something in the works.

• IRIX operating stability on the 256p Origin2000
system has moved quickly from alpha-unreliable to
production quality in 9 months. As with any first
system, there are several problems, bugs, and

features to work around. Good and steady progress
was made as realized in MTTI better than a C90.

• Hardware MTTI for 512p Origin2000 SSI systems is
within an acceptable range, software still needs to
stabilize in order to reach desired overall MTTI. All
indications are that MTTI will approach that of the
C90.

• Hardware failures on the traditional vector systems
take longer to bring back into service than do the
O2k systems, largely due to O2k systems having the
capability to be put back into service with some
portion of the machine disabled and then repaired at
a later (and scheduled) time

4.1 HPM Performance

At NAS we monitor HPM data for most machines that
provide it. Figure 10 show a comparison between The
16p C90 VN and the 256p Origin2000 Steger. Data is
missing in the latter half of 1999 for the 256p system.
We see that the sustained workload performance of
256p significantly out performs the C916 by a factor of
approximately 2.5x. This is significant in that this
measures entire workload performance and not just a
single benchmark code. We do not currently have HPM
data for the 512p system due to it apparent corruption by
unknown cause. The jump in performance of Steger
between July 1999 and March 2000 is believed to be
substantially a result of the operating system
modifications to better control memory layout and thread
affinity. The overall system utilization is in the 75-80%
range making for substantial room for improvement in
system management and adding a checkpoint/restart
feature to the system.

Figure 10

9

Newpage

Total . Evnt MTTI Total . Evnt MTTI Total . Evnt MTTI
#Days %Time # Days #Days %Time # Days #Days %Time # Days

Software Outage 1.28 0.8% 29 5.9 1.63 0.3% 33 17.1 0.59 0.1% 23 35.1
Hardware Outage 0.38 0.2% 6 28.3 5.94 1.1% 27 20.9 2.49 0.3% 23 35.1

Other Caused Outage - 0.0% 1 170.0 0.38 0.1% 18 31.3 1.26 0.2% 28 28.8
Tape Caused Outage - 0.0% - - - 0.0% - - - 0.0% - -
NFS Caused Outage 0.03 0.0% 1 170.0 0.13 0.0% 4 141.0 0.04 0.0% 3 269.1

Network Caused Outage - 0.0% - - - 0.0% 2 282.1 - 0.0% 1 807.2
Unsched Facility Shutdown - 0.0% - - 1.47 0.3% 6 94.0 1.41 0.2% 5 161.4

Sched Dedicated Time 4.24 2.5% 34 5.0 46.38 8.2% 65 8.7 24.26 3.0% 101 8.0
Sched Preventative Maint 0.10 0.1% 1 170.0 1.21 0.2% 3 188.0 0.09 0.0% 2 403.6
Sched Facility Shutdown 3.64 2.1% 2 85.0 5.55 1.0% 4 141.0 5.89 0.7% 5 161.4
System up with problem 0.53 0.3% 15 11.3 0.61 0.1% 29 19.5 0.32 0.0% 21 38.4

System up without problem 159.79 94.0% . - 500.80 88.8% . - 770.83 95.5% . -
Total of All Outages 169.99 . 74 2.3 564.10 . 162 3.5 807.18 . 191 4.2

Total All Unsched Outages 169.99 . 37 4.6 564.10 . 90 6.3 807.18 . 83 9.7
Total of HW/SW Outages 169.99 . 35 4.9 564.10 . 60 9.4 807.18 . 46 17.6

Total . Evnt MTTI Total . Evnt MTTI Total . Evnt MTTI
#Days %Time # Days #Days %Time # Days #Days %Time # Days

Software Outage 2.11 0.4% 14 42.1 0.42 0.1% 8 65.8 3.63 0.9% 40 9.7
Hardware Outage 4.76 0.8% 23 25.6 2.58 0.5% 9 58.5 2.95 0.8% 24 16.2

Other Caused Outage 0.20 0.0% 22 26.8 0.04 0.0% 2 263.2 0.12 0.0% 7 55.6
Tape Caused Outage 0.84 0.1% 18 32.7 0.05 0.0% 2 263.2 - 0.0% - -
NFS Caused Outage - 0.0% - - 0.06 0.0% 2 263.2 0.04 0.0% 4 97.4

Network Caused Outage 0.06 0.0% 2 294.7 0.12 0.0% 2 263.2 0.02 0.0% 2 194.7
Unsched Facility Shutdown 3.35 0.6% 6 98.2 1.99 0.4% 7 75.2 0.28 0.1% 4 97.4

Sched Dedicated Time 3.52 0.6% 26 22.7 2.27 0.4% 13 40.5 2.05 0.5% 11 35.4
Sched Preventative Maint 1.87 0.3% 17 34.7 0.12 0.0% 2 263.2 0.14 0.0% 4 97.4
Sched Facility Shutdown 5.60 1.0% 5 117.9 6.18 1.2% 7 75.2 6.00 1.5% 8 48.7
System up with problem 25.55 4.3% 768 0.8 6.28 1.2% 198 2.7 0.89 0.2% 35 11.1

System up without problem 541.61 91.9% . - 506.36 96.2% . - 373.31 95.9% . -
Total of All Outages 589.47 . 133 4.4 526.47 . 54 9.8 389.43 . 104 3.7

Total All Unsched Outages 589.47 . 85 6.9 526.47 . 32 16.5 389.43 . 81 4.8
Total of HW/SW Outages 589.47 . 37 15.9 526.47 . 17 31.0 389.43 . 64 6.1

Total . Evnt MTTI Total . Evnt MTTI Total . Evnt MTTI
#Days %Time # Days #Days %Time # Days #Days %Time # Days

Software Outage 0.52 0.1% 20 48.8 0.85 0.2% 16 23.3 0.05 0.0% 6 97.5
Hardware Outage 4.15 0.4% 35 27.9 0.74 0.2% 8 46.6 0.08 0.0% 4 146.2

Other Caused Outage 1.10 0.1% 4 244.1 0.57 0.2% 4 93.2 - 0.0% - -
Tape Caused Outage - 0.0% - - - 0.0% - - - 0.0% - -
NFS Caused Outage 0.03 0.0% 2 488.3 - 0.0% - - - 0.0% - -

Network Caused Outage 0.09 0.0% 5 195.3 - 0.0% - - 0.01 0.0% 1 584.9
Unsched Facility Shutdown 1.36 0.1% 6 162.8 0.82 0.2% 3 124.2 0.77 0.1% 3 195.0

Sched Dedicated Time 4.35 0.5% 31 31.5 1.16 0.3% 9 41.4 1.51 0.3% 12 48.7
Sched Preventative Maint 1.23 0.1% 17 57.4 0.20 0.1% 2 186.3 0.59 0.1% 6 97.5
Sched Facility Shutdown 10.25 1.1% 6 162.8 5.77 1.6% 5 74.5 5.30 0.9% 5 117.0
System up with problem 0.28 0.0% 13 75.1 0.11 0.0% 9 41.4 0.19 0.0% 6 97.5

System up without problem 953.16 97.6% . - 362.40 97.3% - - 576.36 98.6% . -
Total of All Outages 976.52 . 126 7.8 372.62 . 47 7.9 584.86 . 37 15.8

Total All Unsched Outages 976.52 . 72 13.6 372.62 . 146 12.0 584.86 . 14 41.8
Total of HW/SW Outages 976.52 . 55 17.8 372.62 . 134 15.5 584.86 . 10 58.5

Table 1 - Multi Year Data

512p Origin2000 (lomax) 256p Origin200 (steger) 64p Origin2000 (hopper)

16p C90 Vector (vn) 8p C90 Vector (eagle) 36p J90 Vector Cluster (newton)

64p Origin2000 (kalnay)64p Origin2000 (sunrise)64p Origin2000 (jimpf0)

10

5 Parallel Programming 512 Processors

M As discussed earlier, non-uniform memory presents a
challenge to the application programmer. Naïve use of
simple loop level parallelism via OpenMP is not likely to
scale beyond a few 10s of processors. Although we
have seen good scaling to 128 processors on a very
special case large single zone CFD grid, not all zones in
CFD problems are that large, in fact they typically vary
greatly in size from a few thousand points to millions
within a single complex vehicle geometry. The individual
zones also vary in complexity, flow characteristics and
thus convergence rates. Not only does this pose initial
static load balancing issues, dynamically throughout the
computation effective load balancing can reduce the
time to solution. To deal with architectural and

application issues, NAS developed a new methodology
for achieving very high levels of parallel efficiency on
very large ccNUMA shared memory systems. This
methodology is simple, general, and widely applicable to
real-world production application codes in use at NASA
and elsewhere. The new methodology is formally called
shared memory Multi-Level Parallelism (MLP).

5.1 Multi-Level Parallelism (MLP)

The implementation is based on shared memory access
to global data while invoking two levels of parallelism for
scaling efficiency. This new and very simple parallel
programming approach was first developed in FY 1998.3

MLP is a vastly simplified, and inherently more scalable

Total . Evnt MTTI Total . Evnt MTTI Total . Evnt MTTI
#Days %Time # Days #Days %Time # Days #Days %Time # Days

Software Outage 1.08 0.4% 6 47.4 0.46 0.2% 5 56.6 1.28 0.8% 29 5.9
Hardware Outage 3.04 1.1% 13 21.9 2.10 0.7% 8 35.4 0.38 0.2% 6 28.3

Other Caused Outage - 0.0% 10 28.5 0.07 0.0% 1 282.9 - 0.0% 1 170.0
Tape Caused Outage 0.35 0.1% 7 40.6 - 0.0% - - - 0.0% - -
NFS Caused Outage - 0.0% - - - 0.0% - - 0.03 0.0% 1 170.0

Network Caused Outage 0.06 0.0% 2 142.3 - 0.0% 1 282.9 - 0.0% - -
Unsched Facility Shutdown 2.22 0.8% 4 71.1 0.91 0.3% 4 70.7 - 0.0% - -

Sched Dedicated Time 2.06 0.7% 14 20.3 1.39 0.5% 17 16.6 4.24 2.5% 34 5.0
Sched Preventative Maint 1.85 0.7% 15 19.0 - 0.0% 1 282.9 0.10 0.1% 1 170.0
Sched Facility Shutdown 4.46 1.6% 4 71.1 3.97 1.4% 3 94.3 3.64 2.1% 2 85.0
System up with problem 18.75 6.6% 604 0.5 0.57 0.2% 24 11.8 0.53 0.3% 15 11.3

System up without problem 250.67 88.1% . - 273.38 96.7% . - 159.79 94.0% . -
Total of All Outages 284.54 . 75 3.8 282.85 . 40 7.1 169.99 . 74 2.3

Total All Unsched Outages 284.54 . 42 6.8 282.85 . 19 14.9 169.99 . 37 4.6
Total of HW/SW Outages 284.54 . 19 15.0 282.85 . 13 21.8 169.99 . 35 4.9

Total . Evnt MTTI Total . Evnt MTTI Total . Evnt MTTI
#Days %Time # Days #Days %Time # Days #Days %Time # Days

Software Outage - 0.0% - - 0.07 0.0% 5 58.5 - 0.0% 2 163.4
Hardware Outage 2.02 0.8% 3 79.8 0.78 0.3% 5 58.5 0.02 0.0% 1 326.9

Other Caused Outage 0.49 0.2% 1 239.5 - 0.0% 1 292.4 - 0.0% - -
Tape Caused Outage - 0.0% - - - 0.0% - - - 0.0% - -
NFS Caused Outage - 0.0% - - - 0.0% - - - 0.0% - -

Network Caused Outage - 0.0% 1 239.5 - 0.0% - - 0.01 0.0% 1 326.9
Unsched Facility Shutdown 0.75 0.3% 3 79.8 0.25 0.1% 2 146.2 0.77 0.2% 3 109.0

Sched Dedicated Time 0.46 0.2% 5 47.9 0.67 0.2% 6 48.7 0.84 0.3% 5 65.4
Sched Preventative Maint - 0.0% - - - 0.0% - - 0.17 0.1% 1 326.9
Sched Facility Shutdown 3.40 1.4% 3 79.8 3.44 1.2% 3 97.5 4.16 1.3% 4 81.7
System up with problem 0.25 0.1% 8 29.9 2.88 1.0% 19 15.4 0.01 0.0% 3 109.0

System up without problem 232.11 96.9% . - 284.35 97.2% . - 320.91 98.2% . -
Total of All Outages 239.48 . 16 15.0 292.44 . 22 13.3 326.89 . 17 19.2

Total All Unsched Outages 239.48 . 8 29.9 292.44 . 13 22.5 326.89 . 7 46.7
Total of HW/SW Outages 239.48 . 3 79.8 292.44 . 10 29.2 326.89 . 3 109.0

Table 2 - Data From 8/99 Forward

64p Origin2000 (jimpf0)

512p Origin200 (lomax)256p Origin2000 (steger)16p C90 Vector (vn)

64p Origin2000 (dixon0) 64p Origin2000 (kalnay)

11

alternative to MPI. During the past year, this technique
has been refined and improved. Executions of the
production OVERFLOW CFD on the 512p system have
demonstrated over 60 GFLOP/s of sustained
performance for customer driven real world problems.

The MLP technique was developed under the Origin
2000 Optimization Effort that began in September, 1997.
This effort was focused on demonstrating that systems
based on RISC microprocessors could execute
production CFD code at rates comparable to, or in
excess of, a dedicated 16 CPU Cray C90 system. NASA
was concerned that there was no apparent graceful
migration path from the aging C90 systems that
supported the bulk of their production computing.
Previous experiments with microprocessor based
systems had met with disappointing results. The Origin
system was a novel new approach, and had some
support for shared memory parallelism not previously
available.

5.2 Overflow

The OVERFLOW CFD code is extensively used in the
government and commercial aerospace communities to
evaluate new aircraft designs. It is one of the largest
consumers of NASA supercomputing cycles, and large
simulations of highly resolved full aircraft are routinely
undertaken. Typical large problems might require
hundreds of Cray C90 CPU hours to complete.
OVERFLOW was considered to be “a toughest case”. If
OVERFLOW could be successfully converted, then
conversion of virtually all multi-zonal production CFD
codes at NASA would likely be successful.

The code consists of over 100,000 lines of FORTRAN
and almost 1000 subroutines. It has an extensive
selection of user inputs that allow various solvers,
smoothers, turbulence models, etc. to be selected. It
was essential for this effort that no functionality be lost
and performance meet or exceed C90 capabilities. The
details of the OVERFLOW optimization effort and the
MLP parallelization approach are given in the sections
below. We start with a general discussion on
parallelization.

5.3 The Focus is on Parallelism

Simply put, parallelism is the central issue in achieving
exceptional performance on large-scale applications. No
matter what system is chosen, parallelism at some level
will be an issue. For commodity based microprocessor
system, it has been repeatedly shown that such CPUs
routinely achieve only 10-20% of their peak
performance on real scientific codes. This amounts to
perhaps 100-200 MFLOP/s per CPU. On systems
where commodity microprocessors are at the core of

their design, an application must scale to hundreds of
CPUs on such systems, if NASA is to achieve sustained
performance levels in the 50-l00 GFLOP/s range
necessary to stay competitive in high end computing
today.

Parallelism is being aggressively pursued on two fronts.
The first is a continuation of the classic message
passing approach of clustered computing. The current
leading technology for this approach is via the Message
Passing Interface, commonly referred to as MPI4. The
second philosophy simply expands on the original Cray
Research Incorporated compiler directive approach.
This has been recently codified into an industry
standard set of directives under the banner OpenMP5.
OpenMP is a widely supported open standard on most if
not nearly all shared memory systems. Each
parallelization approach has its advantages and
disadvantages. We discuss each of these in turn, along
with MLP, which appears to take the best from both.

5.3.1 Message Passing Interface (MPI) Parallelism

The MPI message passing approach is an outgrowth of
the PVM message passing approach of the 80s6. It
provides the user with the ability to spawn a series of
identical processes, each of which is intended to do a
fraction of the total work at hand. Each of the
independent processes exchange information as
necessary via packetized “messages”. These messages
traverse the available hardware communication paths
between processors, and are subject to the path’s
inherent limitations. A major issue with the MPI
approach is that it requires that the user perform all
parallel decomposition of the problem at hand. In
addition the user must perform all data packetization,
communication, and process synchronization manually
via extensive changes to his code, adding calls to the
MPI library to do the functions required.

MPI has some advantage in that it is an industry
recognized standard and allows code executions across
clusters of machines. As of today, it also enjoys a large
base of user-converted code. MPI however, suffers a
number of serious drawbacks:

1) MPI is an arcane and complex library of about 100
subroutines, often with complex and non-intuitive
arguments. A quote from the MPI documentation
drives this home “As discussed in the previous
subsection, the use of vanilla send and receive
routines need careful consideration. Otherwise a
program may easily end up deadlocking. Even
more, some communication constructs may go well
for some data, but deadlock with others. So, at first
sight, this just looks like the very opposite of ease of
use”.

12

2) Calls to MPI routines interspersed in the code often
make it difficult to follow the original code logic, as
synchronization points become muddled.

3) The process of debugging, profiling, and
maintaining MPI based codes is well known to be a
very difficult, error prone and labor-intensive task.

4) Very few tools for efficiently developing code based
on the MPI programming model exist, even after
almost two decades of work in this area.

5) Codes frequently grow substantially in size and
complexity as calls to MPI routines are added (the
MPI version of OVERFLOW is 10,000 lines larger
than the vector MLP version).

6) Large latencies, particularly when accessing other
systems in a cluster environment, often dramatically
reduce overall scaling performance in real world
applications. CFD in particular, is highly sensitive to
message latencies and their effects on code
scaling.

7) Many MPI versions of production codes have been
forced to give up desirable physics, algorithmic
efficiency (i.e. implicitization) and robustness in
order to make the code more latency tolerant and
scalable.

All of these issues together argue strongly against the
use of MPI in any application except where absolutely
necessary.

5.3.2 Loop Level Parallelism (OpenMP)

OpenMP is a vastly simpler method of parallelizing
code. This approach allows users to explicitly request
parallelism at the loop level by inserting compiler
directives in front of each loop targeted for
parallelization. Parallel sections are executed via the
operating system’s automatic spawning of lightweight
threads, each of which performs a fraction of the work of
the loop in parallel. The common implementation is to
have each thread execute a subset of the total iteration
count of the loop, with the subsets distributed
automatically as evenly as possible across all CPUs in
the system. The OpenMP approach avoids the need for
the user to construct messages or explicitly synchronize
processes, dramatically simplifying the code and
shortening development time. Many production codes
already contain Cray microtasking directives, and it is a
simple matter to convert these directives to the OpenMP
equivalents.

OpenMP requires no messaging as the system works
entirely within a shared memory environment. Any

exchange of data between any of the parallel threads is
accomplished by memory referencing instructions only.
Thus, communication time is on the order of hundreds
of nanoseconds, not ten (in box) or even 50 (across
boxes) microseconds typical of the best of MPI
implementations. Also, because the user’s code is
executed as a single “a.out” all of the standard
debugging and profiling tools can be used during the
code development process. OpenMP is a recent
development. It is by far the simplest method for
developing parallel code. Unfortunately, it doesn’t
always scale as well as expected.

The OpenMP scaling issues are for the most part a
direct consequence of executing an OpenMP
application on a NUMA based memory architecture.
That is, it is an effect intimately tied to the variability in
the time needed to access a particular memory location
from a particular CPU. If the user does not exercise
extreme care in the layout of data in a NUMA system,
overall scaling can be quickly inhibited. It is not
uncommon for NASA application codes to fail to scale
past 8 CPUs when ported from the Cray C90 systems;
particularly when the porting effort only consists of
naively converting Cray directives to OpenMP
directives.

For the highest performance, OpenMP requires the
developer to generate code that can be parallelized to
hundreds of CPUs on a loop by loop basis. On NUMA
architectures, this can be a difficult process. It is
particularly difficult for large pre-existing production
codes that have extensive data structures that are
difficult to modify. In fact, OpenMP is generally only
successful at very large CPU counts when codes have
been completely rewritten with OpenMP in mind. This is
a time consuming process at best, and is about as
difficult as converting to MPI.

5.3.3 MLP Parallelism

MLP is differentiated from MPI in that all communication
between processes is through native shared memory
referencing instructions, not messages. It is different
from OpenMP in that it still supports spawning of
independent processes much like MPI, and uses those
processes to invoke a second level of job parallelism.
Because the technique relies on shared memory
communication for all processes, latencies continue to
be on the order of hundreds of nanoseconds, not tens of
microseconds for all processes in the system. This
permits very high levels of scaling efficiency for the
largest CPU counts.

At NASA Ames MLP has been implemented in a user
callable library, MLPlib. MLPlib consists of a total of
three subroutines (totaling 150 lines of source code).
This contrasts sharply with the highly complex MPI

13

approach with tens of thousands of lines of code
comprising the MPI library routines.

MLPlib provides all of the functionality needed to
support very high parallel scaling efficiencies to 512
CPUs and beyond once those platforms become
available.

MLP programming is an open system design and has
the following attributes:

• Two levels of parallelism
• Coarse grained parallelism provided by UNIX forked

processes
• Fine grained parallelism provided at the loop level

via OpenMP directives
• No explicit messaging – all communication is

through globally shared data arrays that are
memory mapped into the processes address space.

The typical MLP application will have the coarse grained
decomposition of the typical MPI code, but will do so
with the much simpler forking of processes under user
control. From a user perspective he simply types “a.out”.
The code itself at some point will make the MLPlib call
to fork other processes. There is no “mpirun” command.
The forked processes provide the coarsest level of
parallelism. For multi-zonal CFD codes the coarse
grained processes are usually assigned to work on one
or more 3D zones for the duration of the calculation.

As the calculation proceeds each of the MLP processes
serially proceeds through the all of the zones assigned
to it. Generally, this means taking a time step for a zone
and proceeding to the next zone in the list. Each of the
MLP processes can take advantage of loop level
parallelism using OpenMP directives. This greatly
expands the number of CPUs available to work on the
total problem, yet does not require fine grained loop
level parallelism to span more than a handful of CPUs.
This is highly desirous in order to keep overall parallel
scaling efficiency high.

It should be noted that within MLP, CPUs can be added
or dropped dynamically within microseconds to effect
better load balance as the problem proceeds. This is
possible because explicit movement of data is
unnecessary in the MLP shared memory environment.
Dynamic load balancing is a well known difficult problem
within the MPI or pure OpenMP environments. For MPI
much data must be moved. Within OpenMP it is difficult
to design a code to operate on different zones with
differing and changing CPU counts at the same time.
For MLP, dynamic load balancing becomes almost a
trivial operation. One simply changes the values in an
array holding the CPU counts per process.

As mentioned earlier MLP establishes a global shared
memory arena to allow users to communicate
information between processes. This arena can be
considered to be a global “common” block from the
FORTRAN programmer’s view. All variables assigned to
this arena are visible to all processes executing.
Furthermore, any accesses of these variables by any
process are performed by direct memory reference
instructions identical to the normal access of any other
variable. All synchronization of access to the data
between processes is handled by the very fast hardware
cache coherency mechanism. Thus, when any process
writes data items in this area, all other processes are
guaranteed to have rapid access to the latest value.

5.3.4 MLPlib – Building an MLP application

MLPlib was created at NASA Ames to allow the simple
development of MLP applications. The library is consists
of a total of three routines requiring approximately 150
lines of source code. The library requires only the most
primitive of UNIX calls. As a result, it is UNIX platform
independent. It currently resides on Sun and SGI
systems at NASA Ames. The routines are described
below:

Subroutine GETMEM(xarry,xpoint,numbyt)

The GETMEM routine is called for each variable the
user declares to be in the “global” common that is visible
to all processes. In this case the GETMEM routine
allocates numbyt bytes to the array, xarray. The variable
xarray will be visible to all MLP processes, and will be
pointed to by the Cray pointer, xpoint. From the user’s
standpoint the programming model is truly that of a
global common block that contains all shared variables.

MLPlib utilizes standard UNIX mmap calls to create the
globally shared memory arena. The philosophy behind
MLP is that each a.out will write data and read data from
the arena whenever it needs to communicate
information to another process. This occurs at full
memory speeds just like any other memory access.
There are no messages, since all transactions are
memory referencing instructions. Latencies on Origin
2000 systems are on the order of 0.5 microseconds for
this activity, not the 10 (in box) or 50 (across box)
microseconds for MPI messaging.

Subroutine FORKIT(numpro,nowpro)

The FORKIT routine spawns additional MLP processes.
A total of numpro processes are created. Nowpro is
returned, and is the current process number. Under
MLP, the user spawns a number of a.out’s that
occasionally share data via the global shared data

14

created with GETMEM. Otherwise they are independent
and execute autonomously.

Subroutine BARRIER(numpro)

The BARRIER routine performs barrier synchronization
between numpro MLP processes. BARRIER waits until
numpro processes have arrived at the barrier, then all
drop through.

Even though MLPlib is a very simple library, results
provided later in this paper demonstrate its power to
scale to large CPU counts. This library should be
contrasted with the MPI library, which consists of around
100 routines and tens of thousands of lines of code
containing many complicated UNIX system calls.
Because of the reduced dependency on system calls,
MLP is much more reliable than MPI. This is particularly
true for applications executing on hundreds of CPUs.

5.3.5 MLP and Multi-Zonal CFD

NASA’s multi-zonal CFD codes like OVERFLOW,
CFL3D, TLNS3D, and LAURA to name a few, are ideal
candidates for MLP parallelism. These codes represent
a major fraction of the compute cycles expended on
NASA’s large compute servers on a yearly basis. They
all decompose a large region of interest into many
linked smaller 3D regions. These smaller regions can be
solved mostly in parallel, with the occasional exchange
of boundary information at the end of a time step. In
short, the recipe for converting a multi-zonal CFD code
to MLP is:

• Assign global variables to shared memory arena
(i.e. boundry condition data)

• Spawn MLP parallel processes
• Assign groups of 3D zones to each MLP process

(coarse parallelism)
• Assign groups of CPUs to each MLP process (fine

parallelism)
• Start the time stepping
• Synchronize MLP processes at the end of a time

step
• Update global data if necessary
• Perform I/O as needed
• Continue the time stepping

Basically, the converted MLP code is initialized via the
master process which performs all initialization tasks.
This process then allocates all variables that are to be
global via GETMEM and then touches the global data
arrays in an “optimal way” which may be as simple as
round-robin across all processor memories in the run or
whatever has been determine as optimal. The master

process then spawns a number of other MLP processes
groups allocating zones of work and a given the proper
number of processor to each MLP process group to
effectively load balance the problem. Each MLP process
group is then tasked with properly touching memory in a
way to again lay out the local data arrays in an “optimal
way”, which may be as simple as first touch. MLP
process groups may also make local copies of data
arrays in order to reduce contention and latency in
accessing the global data.

Each individual MLP processes groups then takes a
time step for each of the zones under their control. After
all zones in a process have taken a step, the boundary
data is updated in the global shared arrays, and the
MLP process groups then barrier synchronize. I/O is
performed if necessary (usually by the master process
to keep it simple), and the processes continue to the
next time step. This approach was inserted into the Cray
C90 version of the OVERFLOW CFD code described
below.

5.3.6 OVERFLOW Origin 2000 Optimization Effort

The Origin optimization effort for OVERFLOW began
with executions of the standard C90 version of
OVERFLOW on the Origin 2000. These early
executions were conducted with OpenMP directives
used in place of all Cray microtasking directives found in
the code. Cray executions had shown that the code was
capable of sustaining 4.6 GFLOP/s on a dedicated 16
CPU C90 system.

Early executions on the Origin 2000 were initially
disappointing with sustainable performance approaching
only about 1 GFLOP regardless of the CPU count used
on the problem. All executions failed to scale past 8
CPUs, due to NUMA effects, and the inherent limitations
of OpenMP loop level parallelism.

The major issue with the first version of the code was
that it serially processed through all of the zones one at
a time for each time step. This worked well on the
moderately parallel C90, but was not efficient on the
target Origin system as it implied that each zone had to
execute well on large numbers of CPUs or the code
would not scale overall. As mentioned earlier, it is
particularly difficult to get OpenMP loops to scale to
large CPU counts, unless great attention is paid to the
allocation of data within the NUMA memory system.
Fixing this to execute well on hundreds of CPUs would
require a complete rewrite of the entire OVERFLOW
code.

15

After reviewing the results of the initial Origin work, the
first optimization effort focused on increasing the single
CPU performance. Profiling of the code showed a very
flat profile with no routine taking over 5% of the CPU
time, and most taking less than 1%. This indicated that
many routines would have to be changed in order to
increase the overall performance of the code.

Efforts at single CPU performance were quickly
abandoned as too invasive and dangerous from a code
validation and verification standpoint. Highly modified
code would not likely be accepted by the production
community due to lack of extensive validation necessary
to ensure the accuracy of the code. Further, the
individual maintaining the code was not amenable to
incorporating massive changes into the standard
release which becomes a significant maintenance issue
over successive releases of OVERFLOW.

The second focus was to adopt the MPI data
decomposition approach to the problem, and attempt to
solve the multi-zone problem in a coarse-grained
parallel fashion. An existing MPI version of the code
was available, but suffered from scaling and correctness
issues at the time. As a result, an alternative coarse-
grained approach was developed. This became MLP.

The MLP technique was developed and inserted into the
OVERFLOW CFD code within 6 months from receipt of
the code. Four of these months were devoted to
learning the code and the single CPU optimization
effort. Only two months were needed to develop and
insert MLP. Ultimately, only a few hundred lines of code
were changed from the original C90 version of the code.
Even today, the code is still 99% identical to the original
C90 code with long vectors throughout. No single CPU
optimizations have been performed on the code.

The end result of the optimization effort was a code that
distributes the zones of a multi-zonal problem across a
modest number of MLP processes (typically 8-64
depending on problem size). These processes then
execute their assigned zones using fine-grained
parallelism on 8-16 CPUs within each MLP process.

5.3.7 OVERFLOW-MLP Results

A test case was defined at the beginning of the Origin
2000 Optimization Effort to evaluate the performance of
the OVERFLOW-MLP code. The case is a real life 35
million point problem describing a large transport aircraft
configured for landing and is used to analyze the wake
vortex issues of these large aircraft. It has impact in
flight safety, airport capacity, and high lift systems. The
35 million points are distributed across 160 zones of
widely varying size from 1.4 million to 11 thousand
points. The problem requires about 2500 time steps to

converge for moderate angles of attack. The solution
requires hundreds of CPU hours on a Cray C90 system
and sustains about 4.6 GFLOP/s on a dedicated 16
CPU system. This problem fully stress tests the MLP
code and Origin 2000 system hardware and software.

The figure above presents histogram showing the results
of one time step as executed on the lomax 512 CPU
Origin 2000 System (R12K/300 MHz) at NASA Ames. A
total of 69 MLP processes were defined for this
execution. Each MLP process had a different number of
CPUs assigned for the fine-grained parallel work, and
each was assigned a different subset of zones to solve.
The largest grid was assigned 32 CPUs and the smallest
grid was assigned 1 CPU. Each vertical bar in the
histogram presents the elapsed wall clock time in
seconds required to solve one time step for all of the
assigned zones in the given MLP process. The worst
case time was 2.6 seconds, resulting an efficiency of
over 90% in load balancing.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 7 13 19 25 31 37 43 49 55 61 67

MLP Group Number

E
la

p
se

d
 T

im
e

(s
ec

)

16

The figure above presents the results in a more
dramatic format. This is a plot of GFLOP/s versus CPU
count from 1 to 512 CPUs. The figure shows a
remarkable linear speedup with increasing CPU count
for OVERFLOW-MLP. Overall, the OVEFLOW-MLP
code executes the 35 million point problem at a
sustained rate of 60 GFLOP/s on 512 CPUs. This
amounts to 13x faster than the dedicated C90 system,
at a cost performance ratio in excess of 33x! As
mentioned above, the execution time per time step was
2.6 seconds, resulting in a fully converged solution
(2500 steps) in less than 2 hours of elapsed time.

Though not shown, the OVERFLOW-MPI results for this
same problem cease to scale past 100 CPUs. This
falloff in MPI scaling is typical for many of the MPI
based production CFD codes at NASA Ames, and is a
function of the relatively high latency found in the MPI
based CFD codes. In this particular case the MLP
approach is about 5x faster overall than the MPI version
with scaling continuing to increase linearly at 512 CPUs.

The 512 CPU (lomax) results are interesting when
contrasted with the 256 CPU (steger) performance
numbers. In effect the execution took place on twice as
many CPUs, but the performance went up by a factor of
three. The reason is primarily because of the doubling of
cache per CPU. Since OVERFLOW is memory bound,
the fact that there is a total of four times the cache
(twice the CPU count and twice the cache per CPU) on
the 512 CPU system made a significant difference in
performance.

Overall impact to the code in terms of modifications
resulted in less than 1% (1000 lines) of code changes
contained in 6 routines during the MLP optimization
effort.

5.4 Future Work

Even though OVERFLOW-MLP performance is very
high relative to the C90, its current performance is
substantially less than could be obtained on the new
microprocessor based systems. Historically, the entire
focus on optimizing OVERFLOW has been to increase
the efficiency of fine and coarse-grained parallelism.
Virtually no single CPU optimizations have been
performed. Examination of the code has shown that
there is perhaps a factor of two in runtime reduction still
available if this activity is undertaken. This work will be
substantially more involved than the work to date, as
many routines will change and the verification and
validation effort will expand accordingly. Current plans
are to work on generally applicable strategies to
microprocessor optimization.

5.5 Substantial Improvement in Capability

Executing production CFD codes 13x faster than a
dedicated 16 CPU C90 system is a major breakthrough
in large scale computing within the United States. In
particular, we can now finally imagine executing high
fidelity RANS simulations of full and highly resolved
aircraft in a matter of 100 minutes or less. We can now
finally imagine invoking computational steering for real
problems in which we fly full aircraft at high resolution in
the ‘electronic” wind tunnel, changing angle of attack,
etc. at will and get the answers back in a few hours.
One can envision scenarios in which a team of
engineers could schedule a system, such as NASA’s
Lomax, for a week to evaluate a vast range of
scenarios, cutting months or even years off the design
cycle of new aircraft. This has been an elusive goal for
decades. It appears that it is now about to be realized.

6 Summary and Conclusions

The recent addition of the lomax single system image
512 CPU Origin to the NASA Ames NAS facility has
proven to be highly successful. Significant contributions
and improvements to the state of the art have been
made in operating systems, systems integration,
application programming techniques and the resulting
performance of the CFD code OVERFLOW that far
exceeds any pre-existing simulation capability in the
United States.

Significant progress has been made in the
understanding operating systems issues with regard to
high processor count ccNUMA systems. Several
additional controls that significantly improve performance
and reduce run time variability have been incorporated
into the standard IRIX operating system.

17

NAS has successfully replaced its primary production
computing resource with a system that is more reliable
(C916 @ 15.0 days vs. 256p @ 20.8 days 512p @ 4.9
days), has higher sustained throughput (2.5x), has a
substantially higher capability in large scale applications
(256p @ 5x, 512p @ 13x), and at a substantially
reduced cost (256p @ 1/5 and 512p @ 1/3).

The success with OVERFLOW-MLP demonstrates that
that MLPlib and MLP programming techniques are an
important step forward in improving parallel scaling
efficiency and algorithmic efficiency while at the same
time maintaining simplicity and elegance in its
implementation in scientific application codes critical to
NASA’s continuing missions success. Further that the
technique is generally applicable to many other science
areas of NASA/National interest including weather
modeling, molecular dynamics, and stellar dynamics,

This success proves the viability of large-scale ccNUMA
architectures. While reliability remains a concern, future
generations of the Origin architecture increase
connectivity and integration thereby significantly
reducing latency, part count and complexity, which
should serve to support even larger configurations or
much more reliable 512p systems.

Future directions should strive to continue to push the
limits of SSI and eliminating single points of failure while
maintaining the appearance from an application of a
single cache coherent shared address space that spans
the entire system.

7 References

1. D.M. Pressel, W.B. Sturek, J. Sahu, K. R. Heavy,
How Moderate-Sized RISC-Based SMPs can
Outperform Much Larger Distributed Memory
MPPs., 41st Cray User Group Conference
Proceeding, May 24-28 1999.

2. J. Petersohn, K. Schilke, Experiences with the
SGI/Cray Origin2000 256 Processor System
Installed at the NAS Facility of the NASA Ames
Research Center, 41st Cray User Group Conference
Proceeding, May 24-28 1999.

3. Taft, Multi-Level Parallelism, A Simple Highly
Scalable Approach to Parallelism for CFD,
HPCCP/CAS Workshop 98 Proceedings, Catherine
Schulbach, editor.

4. W. Gropp, et al. Using MPI: Portable Parallel
Programming with the Message Passing Interface,
MIT Press, Cambridge, MA, 1994.

5. OpenMP Architecture Review Board, OpenMP. A
Proposed Standard API for Shared Memory
Programming. October, 1997.

6. Beguelin, J. Dongarra, G. A. Geist, et al. A user’s
guide to PVM: Parallel Virtual Machine. Technical
Report TM-11826 Oak Ridge National Laboratory,
1991.

