
1

SuperCluster SV1: The Next Step

Bruno Loepfe, Computing Services ETHZ, Zurich, Switzerland
Dr. Olivier Byrde, Cray Inc.

ABSTRACT: In the first two phases of the project SuperCluster SV1, we dealt primarily
with the user aspects of a SuperCluster. Now in phase three, the main focus is operational
aspects. Three subjects will be presented based on our experience: NQE versus LSF,
clusterwide dump/restore, and clusterwide resiliency features.

The project SuperCluster SV1

History
The project SuperCluster SV1 is part of a co-operation

agreement between SGI/Cray and ETHZ. The goal of this
project is to implement a Single System View (SSV) on a
cluster of computers. When users work on a cluster equipped
with SSV, they should get the look-and-feel of working on a
single system. From the implementation point of view, SSV is
a collection of services provided by the machines in the
cluster. As far as possible these services should not be bound
to a particular machine. Of course, certain services rely on a
particular piece of hardware. Tape-services, for example, need
to access some kind of tape-drives; but in most cases, not all
machines in a cluster are directly connected. Apart from
dependencies like these, the cluster should not rely on a
particular machine providing any given service.

The advantages for the users are twofold. First: they do
not need to care which machine in a cluster they should
address in order to use a particular service. Second: hardware
or software failures do not lead to a loss of all services like on
a single machine. Instead, the SuperCluster should be able to
continue uninterrupted operations for unaffected services.
After a hopefully short amount of time to recover a lost
service, the SuperCluster should provide full functionality
again, although perhaps with a certain loss of performance.

Single System Image
Single System Image (SSI) is a special case of SSV that

provides additional functionality like process migration. As a
consequence, SSI is restricted to homogeneous clusters, while
with a few restrictions, SSV can be operated on heterogeneous
clusters as well.

Phase 1
In phase 1 of this project we identified and implemented

the basic topics for SSV:

• clusterwide transparent file access
• job-distribution (batch and interactive)
• administration / accounting / operations

In this phase we found out that operational aspects and
administration would each need their own phase.

Phase 2
In phase 2 we started to deal with operational aspects. The

basic question in this phase was:

• How do we gracefully move a service from the machine
originally exporting it to another machine, and how do we
move it back later ?

Although we already started with phase 3, this phase is
not finished yet.

Phase 3
Currently most of our work belongs to phase 3:

operational aspects and administration. In this paper we will
discuss three topics, chosen from a wider range of problems.

NQE versus LSF

General remarks
Network Queueing Environment (NQE) and Load

Sharing Facility (LSF) are both available on Cray systems. We
do not intend to describe too many implementation details of
each batch system. For the purpose of this paper it is sufficient

2

to know that both accept jobs from users, execute them, and
deliver job output back to the users.

Both batch systems consist of a set of co-operating
collectors and daemons, spread over all machines participating
in the cluster.

In the following discussion we describe a couple of
advantages/disadvantages of LSF version 3.2.2 for UNICOS
and NQE version 3.3.0.15 for UNICOS. As soon as new/
improved versions of these systems appear, some of the points
mentioned hereafter may become obsolete. In addition, the
lists below are in no way exhaustive and are strongly biased
towards the way ETHZ runs its SuperCluster.

Positive aspects of LSF
Probably the two most important positive aspects of LSF

are its scalability and the possibility to move its master
daemon to another machine. In fact, if the LSF master daemon
ever goes out of service, intentionally or as a consequence of a
crash, LSF will detect it and automatically recover from this
loss by designating a new master daemon from the remaining
ones.

LSF has implemented its queues at the daemon level, as
opposed to NQE where the queues reside on the execution
machines. This way LSF is able to exercise a much tighter
control over the jobs in its queues. This in turn enables it to
provide a feature called preemptive queues, which effectively
allows a new job to stop an already running job and to take
over its resources.

LSF has DCE, PVM and MPI support built in. For jobs
using PVM or MPI, LSF provides a special submission
command which ensures that these jobs and the allocation and
distribution of their subprocesses stay entirely under control of
LSF.

Positive aspects of NQE
NQE contains a scheduler, written in Tcl. This scheduler

is a collection of algorithms for bookkeeping and making
decisions. Since Tcl is an interpreted language, the scheduler
can easily be adapted to fit any particular scheduling needs of
a site, even while NQE is running.

NQE features freely definable job attributes. Of course
the scheduler will need some adaption in order to react
properly. But a site is completely free to define any attributes
it needs.

All spooling for a job is local to the execution machine.
This means a job gets the full I/O performance for spooled
I/O, no network traffic is generated.

Negative aspects of LSF
Version 3.2.2 of LSF runs under UNICOS, but does not

yet support some of the important features of UNICOS.

Among other problems we found that jobs created by LSF
always get unlimited resources, despite any limits the user has
set during the job submission. Default limits are not provided.

A less important problem is the statistics generated by
LSF. For example: the memory usage of a job is reported in
Mbytes, instead of Mwords, and it is incorrect.

The administrator should take a lot of care when
configuring LSF. For example: the spooling directory of an
LSF job is $HOME/.lsbatch, which in a cluster most likely is
imported by the execution machine from a file server. In order
to avoid heavy network traffic for jobs generating a lot of
spooled output, the administrator should preallocate this
directory for all users, so that it points to a public local spool
area on each machine in the cluster.

The only way to influence scheduling decision in LSF
seems to be the set of parameters of the submission command.
The administrator has very few possibilities to directly access
and influence the built-in scheduling algorithms.

Negative aspects of NQE
Several features offered by LSF are missing in NQE and

have to be implemented in the scheduler using job attributes.
Among these are for example the routing of jobs requiring
licenses for commercial packages to the appropriate
machine(s), as well as the serializing of a set of jobs, where a
particular job is not allowed to start before certain other jobs
have finished.

NQE does not provide any support for PVM and MPI
jobs. This means that new subprocesses, remote as well as
local, are not under the control of NQE.

Despite its name, Network Queueing Environment, the
master daemon of NQE resides on a particular machine of the
cluster and is not movable. Should this machine need to leave
the cluster, be it for maintenance or due to a crash, the
operations staff will have an overly hard time to restart the
master daemon on another machine in the cluster. And this has
to be done manually, no provisions are made to assist the staff
during this process. In order to allow this move, it is necessary
to take great care during the initial setup of NQE.
Unfortunately the documentation does not give any
information on this topic.

The most important negative aspect of NQE, however, is
its lack of scalability. The underlying database can run on a
single CPU only. According to our experience, this CPU
reaches saturation at a rate of about one request per second to
the database. A request can be a job submission, a status
request from a user, or various internal events and state
changes. Unfortunately we found that it is possible to reach
this limit with a cluster of two machines already. While NQE
is an excellent batch system for single machines like T90, T3E

3

and single J90/SV1, its current implementation will not be
able to handle clusters of more than four machines with lots of
users and the traditional mix of small, medium and big jobs.

Clusterwide dump/restore

The problem
Figure 1 shows a stripped-down picture of the cluster

machines at ETHZ. The two machines on the left side, P1 and
P2, form the production cluster. The two machines on the right
side, T1 and T2, form the test cluster. The big GigaRing,
connecting all four machines, allows to join both subclusters
and to form a bigger cluster. Typically this is done for scaling
tests. Usually the machine P2 acts as tape and file server. If
necessary, the tape drives can be moved to P1, the filesystems
can be moved to any machine in the cluster.

T2

P1

FCN

FCN

FCN

P2

T1

Figure 1: SuperCluster at ETHZ
Since only P2 is equipped with tape drives, we were able

to take tape dumps on that machine only. Of course we would
have liked to take dumps from other machines as well, for
example for storing the actual OS and its configuration from
each machine.

The command r d u m p is supposed to deliver the
functionality of taking a dump and storing it on tapes on a
remote machine. Under UNICOS, however, we could not get
it to work. It seems that rdump tries to access the tape devices
directly, whereas under UNICOS the tape daemon hides them
and therefore they are not directly accessible under normal
circumstances.

Another way of taking dumps and store them on tapes on
a different machine is to store the dump on a network medium,
like an NFS exported filesystem, and copy it to tapes later.
First, this requires sufficient free space, which cannot always
be guaranteed. Second, we found that NFS achieves transfer
rates in the order of 10 - 12 MB/sec over GigaRing, which is
not sufficient for practical purposes.

The requirements
Due to the above limitations, we decided to create a utility

that would fulfill our needs. According to the SuperCluster
concept, the new command should be able to:

• run on any machine in the cluster, regardless of the
location of the tape or file server

• find the tape server without user intervention
• find the file server and exporting protocol (NFS/DFS)

without user intervention
• convert NFS/DFS directories to disk devices, so that the

user does not need to consult a disk layout before starting
a dump

• mimic the original dump as close as possible

The programs cdump/crestore
With the exception of recognizing the DFS protocol and

DFS directories, the new program cdump delivers the
functionality mentioned above. Now it is possible to log on
any machine in the cluster, start cdump, and have any
filesystem (local or remote) dumped to either a file on any
machine in the cluster, or to tapes on the tape server.
Benchmarks under non-dedicated conditions showed a transfer
rate of 50 - 120 MB/sec. This number shows a variation too
big to be really meaningful. But it shows that the network
transfers are not really a bottleneck.

In the trivial case where the tape devices reside on the
same machine as the filesystem to be dumped, cdump uses the
original dump to do the work. In this case the overhead of
cdump compared to dump is neglectible.

crestore, the inverse operation of c d u m p, is not
implemented yet. We found it very difficult to implement the
interactive mode of restore. So far we have not been able to
come up with a more efficient solution than reading the dump
file twice. But reading dumps twice will cause a major
overhead; in particular for large tape dumps this overhead is
not acceptable. We still hope to find a better way to implement
this feature, but maybe we will have to drop it.

Clusterwide resiliency features

Because of the multiplicity of its elements, a SuperCluster
is more likely to be the subject of a component failure than a
conventional, monolithic system. On the other hand, the
inherent redundancy of the SuperCluster makes it very robust;
an isolated failure will generally not bring the whole cluster
down.

The term resiliency denotes the ability of the SuperCluster
to sustain such a component failure, and possibly to recover
from it. In the present context, we will consider only the

4

situation where the component is a node; i.e., a whole SV1
cabinet. Indeed, those situations where the faulty component is
a CPU or memory module are normally handled (more or less
gracefully) by the operating system running on the machine
where the event occured.

At the SuperCluster level, two scenarios are of particular
interest: node maintenance and power failure. First, when
hardware or software maintenance is required, the
administrator should be able to intervene on any node of the
SuperCluster with minimal impact on the production
environment. Second, in the unlikely case of a power failure
on one node, the SuperCluster should be able to survive that
event, detect and isolate the faulty node, and continue to
operate normally until that node is functional again.

Both scenarios have been tested in a real production
environment using the SuperCluster at ETHZ. The two
production systems and the two test systems were all
connected together via the common GigaRing, although for
obvious reasons the actual tests (reboot, power off) were
performed on the test systems only. (It must be noted,
however, that traffic over GigaRing between the production
and the test systems was virtually nonexistent.)

In the first test, one node was brought down to single-user
mode and then rebooted. The node was automatically folded
out of the GigaRing (that is normal shutdown procedure) and
then manually folded back in. This whole operation had
absolutely no effect on the other three nodes on the GigaRing,
which continued to operate normally.

In the second test, one node was turned off via the master
circuit breaker, thus simulating a power failure. Not
surprisingly, the effect on that node was dramatic: all

processes and running applications were terminated, all disk
and network activity was abruptly stopped, causing certain
data loss. However, the GigaRing controller was able to detect
the loss of that node and successfully folded it out. The effect
on the other three nodes was minimal; only those data being
exchanged with the first node were lost. The node was then
powered back on and rebooted, from which point the situation
is similar to that described in the first test.

These tests have shown that a temporary failure can be
detected and sustained by the SuperCluster without much
impact on its normal operation. However, the problem
becomes more complex if the failure persists over a longer
period of time and if the faulty node is handling global
services such as NFS, NQE or DMF. In this case, a special
procedure is required to migrate these services to another node
in the SuperCluster. How this could be achieved as gracefully
as possible, was the main topic in phase 2 of this project
SuperCluster SV1.

Conclusion

In the framework of a co-operation agreement between
SGI/Cray and ETHZ we have studied concepts and
implementation of various aspects of Single System View
(SSV) for clusters. Based on the experience gained during the
three phases of this project, we think that SSV is an excellent
vehicle for combining computers into a throughput-delivering
device for all people involved: users, operations staff and
system administrators.

