
SV1e Performance of User Codes

Tom Baring and Jeff McAllister
 Arctic Region Supercomputing Center, University of Alaska Fairbanks 99775

{baring,mcallist}@arsc.edu

Abstract: The first SV1e processor upgrade at a user site was
accomplished at the Arctic Region Supercomputing Center (ARSC) on
April 11, 2001. In general, the CPU upgrade, in advance of the “X”
memory upgrade, has not improved performance as much as might be
expected. We discuss performance data collected on several significant
user codes as part of understanding what allows some codes to take
advantage of CPU speed increase alone while others require
corresponding CPU and memory rate improvements for increased
performance. This upgrade underscores an important point: dissociating
performance from memory speed is becoming an increasingly
important part of using modern computer architectures.

1 Introduction

At the moment, chilkoot has an unusual intermediate hardware configuration.
Our SV1's processors are upgraded, but the memory is not. Most sites will upgrade both
processors and memory simultaneously. This paper explores the effect of the CPU
upgrade on four user codes to understand more precisely why only certain codes show
performance improvement. This "upgrade in component steps" provides insight: with
CPU speed improvements so much easier to come by than memory speed improvements,
upgrades in the future may start looking more and more like this one. With the gap
between CPU and memory rates growing greater exponentially, learning why
performance improves with faster CPU speeds in some cases and not others is part of
developing steps to help users take advantage of hardware advances. In this paper we
also consider several metrics which help describe how codes will perform as CPU and
memory become more unbalanced.

2 SV1 and SV1ex

The SV1e processor upgrade allows us to see the effect of a CPU speed increase
alone, in contrast to other upgrades (i.e. J90-SV1) where CPU speed and memory
bandwidth improved simultaneously on a similar architecture. The clock speed on the
original SV1 processor is 300MHz. The SV1e processor is 66% faster at 500MHz.
However, bandwidth from chip to memory is unchanged. Thus, in proportion to how
efficiently a code uses memory, memory speed drives performance -- and this
characteristic describes how close performance will remain to SV1 levels until
completion of the upgrade path with "X" memory. "Re-balancing" is fortunate in this
case, but -- given the industry-wide lag in memory speeds -- future systems are likely to
grow more distant from CPU/memory parity.

"Machine Balance" as a metric, is growing more important in discussing
performance. It is a measure of a memory subsystem's ability to supply data to a
processor at the same rate it can perform work. It is simply the ratio of peak floating
point operations per second to measured peak bandwidth [4]. Machine balance isn't
necessarily good or bad and doesn't have a direct correlation to performance. However,
adding additional memory speed will have diminishing effect as this metric goes toward
zero, and adding additional CPU speed will have diminishing effect as this metric
increases past one.

ARSC installed a Cray Inc., SV1 in September, 2000 replacing its previous
parallel vector processor (PVP), a Cray J90. Even though the machine balance worsened
(table 1), the memory and CPU speed increase benefited everyone.

Table 1
Peak per CPU Peak per CPU

Platform MFLOPS Mem Ref/Sec Machine Balance
 J90 200 200 1.0
 SV1 1200 315 3.8
 "SV1e" 2000 315 6.4
 SV1ex 2000 475 4.2

In contrast, on April 11, 2001, ARSC upgraded the SV1 processors to the “SV1e”
version. With the CPU speed and memory bandwidth already out of balance toward too
much CPU speed, in theory, increasing CPU speed would not help as much as enhancing
memory bandwidth. Our observed data--system-wide and in the four cases studied in
greater detail in this paper—concurs. Only codes with certain characteristics limiting
their dependence on main memory speed benefited from this upgrade. (Extrapolating
from this trend, if balance were to continue to deteriorate, soon only the most memory
independent codes would see any improvement from added CPU speed.)

Fortunately, ARSC will upgrade the memory subsystem to “X” memory as soon
as it becomes available (at which point chilkoot will be an SV1ex). The “X” memory is
projected to improve peak per CPU memory bandwidth by a factor of about 1.5 and to
approximately double overall system memory bandwidth [2]. This upgrade will mean
that data becomes available for processor operations sooner, and calculations can proceed
at rates closer to the processor's clock speed.

When looking at balance, the "missing" side drives performance. As John
McCalpin wrote in 1995, in the past, "floating-point operations were considered quite
expensive, often costing 10 times as much as an uncached memory reference. Today the
situation is dramatically reversed" [4]. Now, it can generally be said that memory
bandwidth drives performance. To prove this to ourselves, we switched off two hardware
facilities, cache and bidirectional memory (BDM), for test runs of one of our user codes,
Tsunami. The user-level commands to do this are:

 /etc/cpu –m ecdoff ./a.out # Run with cache off
 /etc/cpu –m bdmoff ./a.out # Run with BDM off

We draw some obvious conclusions from graphs (figure 1) of results from these
tests.

Figure 1

Tsunami -- SV1e Memory Effects

240

220

200

180

160

140

120

100

M
FL

O
P

S

Normal

No BDM

No Cache
Normal No BDM

No Cache

T NCPUS=4
T MSP

180

160

140

120

100

80

M
 M

em
R

ef
s/

S
ec Normal

No BDM

No Cache
Normal

No BDM

No Cache

T NCPUS=4
T MSP

Memory Test Enabled

First, for Tsunami, BDM and Cache contribute positively to performance. An
“injury” to the memory subsystem (turning BDM off) causes a reduction in memory
references. Second, the reduction in memory bandwidth causes a proportionate drop in
MFLOPS. This supports our contention that the memory upgrade will have a positive
effect on this code’s performance, and that performance is, to some degree or another,
driven by memory speed.

Fortunately, memory speed is only one of the many factors that go into
performance. Efficient reuse of cached data can compensate. On the SV1e, cache
memory resides on the same chip as the CPU, so the access rate can increase with clock
speed. This is illustrated in the graph above. This code is somewhat cache-friendly,
deriving at least part of its performance from cache reuse. While not among the best
performers of the codes tested, this code achieves at least some independence from
memory speed.

3 Achieving Peak Performance on the SV1

Achieving peak performance requires awareness of the underlying architecture at
some level or another. Achieving acceptable performance gains with hardware upgrades
(any vendor) now also requires an awareness of and efficiency with memory. It is no
longer sufficient to merely consider CPU efficiency when developing algorithms.

Programming for increasingly unbalanced platforms goes hand in hand with
existing performance considerations. For example, cache memory--in addition to being
faster--is more responsive to CPU speed increases. Also, describing codes in terms of
how close they are to peak according to the following performance metrics plays a part in
evaluating which codes will respond to CPU speed increases and which must rely on
memory speed for improvement.

Performance Metrics for SV1 Codes:

1. high vector/scalar ratio (MFLOPS/MIPS)
2. high computational intensity (MFLOPS/M memory references per sec)
3. high cache/memory refs ratio (M cache hits per sec/M memory references per sec)

In general, codes which display these characteristics (especially the last two)
perform well on any system. A major part of high CPU throughput is optimizing
communication with memory, and this also turns out to be the best way to reduce the
effects of machine imbalance.

SV1 codes with all of these characteristics can achieve very high performance and
respond to CPU speed increases. ARSC held a contest in issue 213 of its HPC Users’
Newsletter (http://www.arsc.edu/pubs/HPCnews), seeking codes which would achieve
near peak performance on the SV1. The winner, dubbed “gflop,” achieves about 90% of
peak and its timings, under both PrgEnv 3.4 and 3.5, and both processors are shown in
figure 2. The “MFLOPS” values shown are per CPU.

Figure 2

20
00

12
00

M
FL

O
P

S

SV1 PE3.4 SV1 PE3.5 SV1e PE3.4 SV1e PE3.5

 "gflop": NCPUS=1
 "gflop": NCPUS=4
 "gflop": MSP
 Theoretical Peak

Although scientific applications on ARSC PVP systems return a smaller percentage of
peak, “gflop” demonstrates the limits of actual, albeit “toy,” codes, and could
demonstrate the performance of a portion of a real code. It shows the potential speedup
available from the SV1-"SV1e" upgrade. This code scores well on the three metrics
mentioned above, and is not dependent on memory speed for increased performance.
This supports our thesis, and indicates that if future optimizations on user codes strove to

push the same metrics in the same directions their performance would be closer to the
peak CPU rate -- and they would also benefit more from increases in CPU rate.

4 Individual User Codes
Throughout the programming environment and processor upgrades, we have run

tests using four user applications. All performance numbers were obtained using “hpm”,
the Cray hardware performance monitor, and “ja,” the job accounting utility. The codes
are arranged in order of observed performance improvement. Some codes displayed a
wide range between tasking levels and we do not have SV1 performance data for all
tasking combinations. Codes which did not see much improvement with the "SV1e"
processor upgrade are expected to improve when the "X" memory is installed.

GAMESS

GAMESS is a well-known quantum chemistry package, and is run on one
dedicated chilkoot CPU. This means it is locked into a processor, and although it can’t
be swapped out, it does share the processor, cache, and memory subsystem. In going
from the SV1 to the SV1e, GAMESS obtained the best performance boost we saw in a
user code, essentially the clock speedup of 66%. The cache hit rate, memory reference
rate, and MFLOPS rate all increased by approximately this amount. Total CPU time for
equally sized jobs dropped a commensurate 38%. Note, however, that the code/data
combination is dominated by scalar, not vector, operations, and obtains about 80
MFLOPS on the SV1e processor, or 4% of peak.

FLAPW

This is a well-vectorized quantum physics code which, in our runs on 4 CPUs,
logged increases of 23% to 40% in its cache hit, memory reference, and MFLOPS rates,
and a commensurate 18% drop in CPU seconds. It obtains 150-300+ MFLOPS in our
test data, and is the highest performer in the group.

TSUNAMI

This is a finite difference code, written with traditional Fortran 77 style DO loops,
and achieves reasonable vector performance. It solves the shallow-water wave equations
for nested grids of increasing resolution. On one SV1e processor, it sustains 250
MFLOPS, an improvement of 6% over the SV1.

POLAIR

This is a coupled ocean/land/atmosphere/ice model, and is unique in having been
written using Fortran 90 constructs, such as WHERE statements and array syntax to the
elimination of DO loops. It is extremely memory bandwidth limited due to its algorithm
for computing finite differences of adjacent grid points. Rather than implement this as a
4-point stencil in nested DO loops, which would be cache and memory friendly, it
duplicates the array four times, shifting it N, S, E, and W, processing its boundary

conditions, and then evaluates the stencil by comparing the same grid points on each of
the four shifted grids plus the original.

Interestingly, POLAIR appears to use the vector registers and processors, but
given the huge load on the memory subsystem, only achieves 85 MFLOPS per CPU
when run on 4 CPUS. As the most memory-dependent code tested, it is the least
responsive to CPU speed increase. Different tasking levels showed widely different
speedups, ranging from -20% to 11%, though the average is close to 0%.

5 Summary And Conclusions

The following table summarizes the metrics we've considered and shows how the
four codes score, using average of performance increases at 1, 2, 4, and 8 processors
(where available):

Table 2
GAMESS FLAPW TSUNAMI POLAIR

Vectorization low high high high
Comp. intensity low high medium low
Cache/Mem ref ratio high high low low
MFLOPS increase 66% 29% 6% 0%

Within this group of codes, use of cache instead of memory (high cache/mem
ratio) is the most effective indicator of how well a code will respond to CPU speed
increases. The largest gains went to the most cache-friendly codes while the least went to
the most memory-intensive. As independence from main memory speed is the goal, this
conclusion makes sense.

A plot of MFLOPS as a function of MIPs, for four of the codes tested (figure 4),
shows the range of vector use.

In this and subsequent plots, auto-tasked runs made on 1, 2, 4, and 8 processors
are all included (when available), as are runs compiled under both programming
environments 3.4 and 3.5, as are runs on both the SV1 and SV1e processors. The auto-
tasked runs account (in general) for the spread of points along the linear least squares
fitted lines, and the SV1e runs (in general) out-perform the SV1 runs. The values plotted
are per processor averages, even for the multiple-CPU runs.

Figure 3

300

200

100

0

M
FL

O
P

S

140120100806040200
MIPS

FLAPW SV1 SV1e
POLAIR SV1 SV1e
Tsunami SV1 SV1e
GAMESS SV1 SV1e

R=6.7

R=2.9 R=0.6

R=2.7

Vector/Scalar Analysis
Combined: SV1/SV1e, PE3.4/PE3.5, NCPUS=1,2,4,8

"R" is average ratio

The value, “R” shown for each code is the ratio of MFLOPS to MIPS, and thus
represents the number of operations per instruction averaged over entire runs of the code.
Each ratio, “R,” is actually computed as the average of the ratios for all the runs.

Degree of vectorization, though it is crucial to SV1 performance, does not
contribute much negatively or positively to CPU-based performance improvement.
Vectorization is a magnification of otherwise existing patterns -- the same operations,
loads, and stores done on many memory elements. While it magnifies MFLOPS rates,
other effects are more important in determining how much a code can benefit from
increased CPU speed alone.

GAMESS, a scalar code, showed the best performance increase. Tsunami, a reasonable
vector code, showed the second worst performance increase. POLAIR achieves vector-
like ratios of operations per instruction, scalar-like ratios of operations per second, and
the worst performance increase. Degree of vectorization is clearly a poor metric for
assessing a code’s independence from memory bandwidth.

Another useful comparison is operations performed per memory reference.
Cray’s guide to “Optimizing Application Code on UNICOS Systems” [3] defines
computational intensity as the memory reference rate divided by the floating point
operations rate. We’ve plotted the inverse ratio (figure 4) to maintain consistent axes
with other graphs, and because we believe that in general, MFLOPS is the dependent
variable, relative to memory reference rates.

Figure 4

Computational Intensity
MFLOPS vs Memory References Per Second

Combined: SV1/SV1e, PE3.4/PE3.5, NCPUS=1,2,4,8

350

300

250

200

150

100

50

M
FL

O
P

S

200150100
M MemRefs/Sec per CPU

FLAPW SV1 SV1e
POLAIR SV1 SV1e
Tsunami SV1 SV1e
GAMESS SV1 SV1e

m=2.9

m=1.1

m=0.8
m=0.6

In this plot, the slopes of the lines are labeled as “m” and show that, for instance,
FLAPW performs almost three operations for every memory reference. Accepting the
relative scatter of point in the case of Tsunami, the linear trends of these lines indicate
that the computational intensity in the codes is inherent in the algorithms, their
implementation, and their treatment under the compilers. The upgrades to programming
environment and processor have not altered the codes’ computational intensities.

FLAPW, one of the codes showing the best performance increases, scores highest
according to this metric. It performs more computations per memory access and
therefore is more independent of memory speed. POLAIR will remain subservient to
memory bandwidth improvements of the future and thus, is under evaluation for deep
changes to its basic algorithm.

Figure 5

100

80

60

40

20

0

M
 C

ac
he

 H
its

/S
ec

25020015010050
M MemRefs/Sec

FLAPW SV1 SV1e
POLAIR SV1 SV1e
Tsunami SV1 SV1e
GAMESS SV1 SV1e

Cache Use
Combined: SV1/SV1e, PE3.4/PE3.5, NCPUS=1,2,4,8

The cache use graph shows the proportion of memory references which are
satisfied from cache.

It places the most scalar of the codes, GAMESS, on top of the best performer,
FLAPW. In one sense, both of these codes are doing exactly what we want: making
fewer memory references, and reusing them from cache more often. These two codes
received the greatest improvement from the SV1e processors in all categories: cache hits,
MIPS, memory references, MFLOPS, and CPU time. This is due to the codes’ ability to
reuse data from cache. CPU to cache bandwidth increased by 66% with the 66% clock
speed increase, thus increasing effective memory bandwidth for these cache-friendly
codes, despite the fact that the rest of the memory subsystem was not upgraded.

This relationship is further highlighted by the following graph (figure 6), which
relates CPU-based speedup to the ratio of cache hits per memory reference. This ratio
turns out to be especially telling, as it underscores where a code is satisfying most of its
memory needs. If most memory references result in a cache miss and retrieval from main
memory, the code cannot escape the relative slowness of that memory. On the other
hand, the more a code is able to use cache (or, even better, registers) the more
independent it can be from memory speed.

Figure 6

60

40

20

0

-20

 P
er

ce
nt

 S
pe

ed
up

:
S

V
1

to
 S

V
1e

0.80.60.40.20.0
Cache Hits per Memory Reference

12

4
8 18

2
4

8

11T FLAPW
T POLAIR
T Tsunami
T GAMESS

Speedup VS Cache Use
Speedup going from SV1 (PE3.4) to SV1e (PE3.5)

Numbers indicate NCPUS

In a world where CPU speeds are generally improving much faster than memory
bandwidth, we're glad that the SV1ex provides, not only a substantial upgrade, but
machine balance only slightly larger than its predecessor, the SV1. Our experience with
the "SV1e" processors underscores just how significant, and necessary, the faster "X"
memory is.

Getting this "upgrade in component parts" has been a valuable study in machine
balance. The insight into ways to decouple performance from memory speed will
improve our ability to advise users towards the most productive way to optimize codes
not just for present performance, but so codes can continue to do more as hardware is
upgraded.

References
[1]: Maynard Brandt, Jeff Brooks, Margaret Cahir, Tom Hewitt, Enrique Lopez-Pineda, Dick Sandness..

"The Benchmarker’s Guide for CRAY SV1 Systems", Cray Inc., July 20, 2000

[2]: Personal communication with Cray Inc. SV1 Project personnel. May, 2001

[3]: "Optimizing Application Code on UNICOS Systems”, Cray online Software Publications, 004-2192-
003

[4]: John D. McCalpin. "Memory Bandwidth and Machine Balance in Current High Performance
Computers", IEEE Technical Committee on Computer Architecture newsletter, December 1995.

Acknowledgements:
Thanks to the users and creators of the codes used in this article. Thanks also to John Metzner (Cray Inc.)

and Guy Robinson (ARSC).

