
1

An Abstract View of the MTA
Architecture

Preston Briggs
preston@cray.com

I will begin with a table showing overall system characteristics, to illustrate
the scale of machine.

Next is a series of slides, appropriate for those interested in computer
architecture, explaining some of the machine’s theoretical background.

I follow with a high-level view of the system.

Finally, I will give a more detailed description of each of the major
components of the system.

2

MTA System Characteristics

System size
 processors

Peak performance
 GFlop/s

Memory capacity
 GBytes

I/O bandwidth
 GByte/s 6.4 12.8 25.6 51.2 102.4

64 128 256 512 1024

14.4 28.8 57.6 115.2 230.4

16 32 64 128 256

The system is built out of board, where each board contains a processor, an
I/O processor, two memories, and the necessary power supplies and
network interface.

As the system scales, more boards are added and the network grows to
match.

16 boards fit in a cage and 4 cages make a stack.

Architecturally, the current design can scale to 256 processors.
Our future systems will scale to a few thousand processors.

3

Latency and Bandwidth

In the old days, a “memory unit” could handle one memory
reference every tick.

latenc
y

bandwidth

In other words, the latency was 1 tick and the bandwidth was 1
reference/tick.

The next few slides are intended for those interested in the architectural
ideas behind the system. Most potential users of the system will be happy to
skip over these.

Here, I introduce a graphical language for describing system components

The X axis will show latency expressed in ticks
The Y axis shows bandwidth expressed in reference/tick

This square abstractly represents a memory unit with a latency of 1 tick and
a bandwidth of 1 reference/tick.

4

Balanced Systems

This made it easy to build balanced systems

I.e., where the processor and memory can handle memory
references at the same speed.

CPU RAM

The bandwidth of the memory should match the bandwidth of the
processor. More memory bandwidth would be wasted and less implies that
some programs will wait on memory.

5

Modern DRAMs

These days, we might expect 1 reference every 16 ticks (or worse).

Here the latency is 16 ticks and the bandwidth is 1/16
reference/tick.

Terrible!

Modern DRAM systems have a much higher latency (in terms of clock ticks)
than older systems.

It’s not the fault of the memory designers; rather, it’s due to the wonderful
progress in CPU clock frequencies.

Nevertheless, we must somehow deal with the change.

6

Improving Bandwidth

One approach is to use a cache (or perhaps several levels of
cache).

Another approach is to read many words at time.

These approaches work if there is adequate locality.

The cache depends on temporal locality.
The cache illustrated here would have good latency and bandwidth for hits,
but bad latency and bandwidth for misses.

Reading many words at once depends on spatial locality.
In the 2nd picture, we see the same latency, but the bandwidth is improved
to 8/16 = 1/2 reference/tick.

It’s common to combine these schemes, reading long lines at each cache
miss. In this case, the effectiveness of the cache will depend on both forms
of locality.

7

Using Multiple Banks
Our approach is to use multiple banks.

By accepting a small increase in latency, we can approach 1
reference/tick.

Abstracting, we get

That is, a memory with high bandwidth and long latency.

To achieve good bandwidth with DRAMs on the MTA, we use many banks (as
do classic Cray vector machines and others).

It works well when we have many banks and references are well distributed
among the banks.

The classic vector machines suffer when faced with power-of-2 strides.
We avoid this difficulty by hashing all addresses, protecting us against any
stride problems.

8

Some Queuing Theory

Little’s Law says

concurrency = latency x bandwidth

Therefore, in a picture like this

The area of the rectangle represents concurrency, or the
number of outstanding memory references.

Notice the dimensional analysis works out correctly:

ticks x references/tick = references

High concurrency in the memory indicates that the processor must be able
to support a large number of outstanding requests to achieve the potential
bandwidth.

In a balanced system, the bandwidth of the memory should equal the
bandwidth of the processor, and the latency tolerance of the processor
should be greater than the latency of the memory.

9

Increasing Processor Concurrency

• Allowing multiple outstanding cache misses (especially
with long cache lines)

• Vector operations

• Multithreading

Many current microprocessors allow several outstanding cache misses
(perhaps 4 or 8). This seems quite inadequate in the face of the huge
latencies to their main memory.

Vector systems are able to issue many loads at once using vector
operations, thus tolerating latencies proportional to their vector length.
For this reason, vector systems require ever longer vectors to approach
peak performance.

Multithreading is a more flexible approach, allowing the tolerance of very
large latencies (up to 1024 ticks in the current MTA architecture).

10

Tolerating Latency
We can tolerate long latencies by using a multithreaded processor.

Abstracting, we get

processor memory

where the the processor should have more concurrency than
the memory.

Multithreaded processors achieve latency tolerance by multiplexing
between many concurrent threads. If the concurrency of the processor is
greater than the concurrency of the memory (the product of its bandwidth
and latency), then the processor will be able to tolerate the memory’s
latency.

Note that the number of threads running in the processor is not equal to
the number of banks in the memory.

• The number of memory banks is determined by the latency and the
desired bandwidth.

• The number of threads running in the processor is determined by
the total concurrency of the memory.

11

Scaling Up
To achieve high performance, we build a parallel system, with
several processors and several memories, all connected with a
large network.

processors network memories
Each time we add a processor capable of issuing a memory
reference every tick, we must add a memory capable of
handle a reference every tick.

The bandwidth of the network must grow in proportion.

This is our first view of a complete system, with processor, memories, and
an interconnection network.

Notice that we maintain our graphical relations, with latencies shown on
the X axis and bandwidth shown on the Y axis.

• The bandwidth across the network is equal to the sum of the
processors’ bandwidths.

• The latency across the network (for our topology) is proportional
to √p where p is the number of processors.

• Each processor must be able to tolerate the latency of the
memories and the network.

12

Adding I/O

A complete system needs I/O.

processors network memories

On our system, we add an I/O processor (IOP) for each new CPU.

Since IOPs issue memory references, we must add a memory,
too.

CPU

CPU

IOP

IOP

The MTA scales in just these proportions. With each new processor, we also
add an IOP, 2 memories, and additional network resources.

Each processor is capable of 900 Mflop/s peak and has a bandwidth of 2.4
GByte/s (300 million 8-byte references per second).

Each memory has a capacity of 2 Gbytes and a bandwidth of 2.4 GByte/s

Each IOP has a bidirectional 64-bit HIPPI connection capable of 200 Mbyte/s

13

View of an MTA processor

i = n

i = 3

i = 2

i = 1

.
 .
 .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

.
 .
 .

Sub-
problem

B
Subproblem A

Serial
Code

Unused streams

. . . .

Programs
running in
parallel

Concurrent
threads of
computation

Hardware
streams
(128)

Instruction
Ready
Pool;

Pipeline of
executing
instructions

Unused streams

This picture illustrates how several programs might be run on a single
multithreaded processor.

The top level shows four programs, all running simultaneously on one
processor.

The second level shows the various threads comprising each job
• Program 1 is running a loop in parallel
• Program 2 has two course-grain parallel tasks running
• Program 3 has both course-grain and loop-level parallelism
• Program 4 is serial, although it may exhibit some instruction-level
parallelism

The third level illustrates the many streams provided by the hardware. The
colored streams are executing instruction on behalf of different active
threads. The remaining streams are idle.

The fourth level illustrates the instruction-ready pool. Each active stream
can have at most 1 instruction ready at a time.

At the bottom, we see the processor pipeline. There is only one pipeline
per processor (21 stages long) and each stream can have only one
instruction in the pipeline at a time.
This implies that each stream can issue at most one instruction every 21
clock ticks.

14

View of Multiple MTA Processors

i = n

i = 3

i = 2

i = 1

.
 .
 .

 1 2 3 4

Sub-
problem

A

i = n

i = 1

i = 0

.
 .
 .

Sub-
problem

B
Subproblem A

Serial
Code

Programs
running in
parallel

Concurrent
threads of
computation

Multithreaded
across
multiple
processors

.

Here we see the same four programs, but spread across a 4-processor
machine.

Some programs run entirely on a single processor and some are spread
across multiple processors. Of course, the serial program runs on a single
stream of a single processor.

15

Details

Each processor
• Supports 128 streams
• Has 16 protection domains
• Runs at 300 MHz

Each stream
• RISC-like instruction set
• 32 general-purpose registers, 64 bits each
• Three operations per instruction

The registers support integer and floating-point operations.
Fastest FP is 64-bit IEEE. We also support 32-bit and 128-bit FP.
Hardware support for soft underflow, etc.

Each instruction has 3 operations
• A memory operation (a load or store)
• An arithmetic operation (including a fused multiply-add)
• A control operation (or an add)

Thus, maximum bandwidth is one memory reference per tick.
Maximum FP is 3 flops per tick = 900 Mflop/s per processor.

For matrix multiplication, asymptotic rate is 600 Mflop/s

16

Memory Subsystem

• Uniform memory access
– all memory is global
– no stride sensitivity
– logical addresses are hashed to physical

addresses
• 2 memories, each 2 Gbyte, per processor
• 1 memory reference per cycle per memory
• Small hot-spot cache in each memory to speed

repetitive data accesses

Memory is UMA, not NUMA (as far as you can tell)

Every location is equally accessible from each processor

Each memory has 2 Gbytes, with 2 memories per processor

Each memory has 128 banks of memory

The hot-spot cache is a small data cache located on the memory. It’s used
to help avoid hot spots occurring when many threads attempt to access the
same location. Since its located at the memory instead of at the processor,
coherency is not an issue.

17

Memory Details

• 64-bit, byte-addressable words
• Big-endian
• 4 tag bits, plus additional bits for error

correction, per word

tag bits data values

063
forward
trap
1

trap 2
full-
empty

The extra bits associated with each word of memory are a relatively unique
feature.

They are used for several purposes:
• Synchronization
• Data watchpoints for the debugger
• Protecting the malloc’s memory pool from erroneous user
programs

They may all be accessed and manipulated via ordinary user-level
instructions

18

Synchronized Memory Operations

Each word of memory has an associated full-empty bit
• normal loads and stores disregard the full-empty bit
• sync loads wait for the full-empty bit to be set, then reset it
• sync stores wait for the full-empty bit to empty, then set it
sync and normal memory operations take the same time.
Waiting consumes no processor cycles.

sync memory operations are available via data declarations and
intrinsics in Fortran, C, C++

All communication and synchronization between threads occur in memory.

The MTA supplies cheap and abundant synchronization via full-empty bits
associated with each word of memory.

Synchronized loads and stores are no more expensive than ordinary loads
and stores.

Lightweight synchronization is a key part of the MTA’s ability to exploit
parallelism.

19

The Network

• The network is a 3D mesh
• Packet switched
• Each link runs at 2.4 Gbyte/s
• Resources (processors and memories) are placed at

nodes, sparsely, throughout the network.

Users are typically unconcerned with the network.

To architects, it’s interesting to note that as the machine scales, the
network must grow at a faster rate.

20

Ease of Programming

It’s easier to program the MTA for high performance than
any other system.

• No message passing
• No data distribution
• No cache management
• No stride problems
• No vectorization

As a result of the architecture, we believe the system offers two big
advantages: scalability and ease of programming.

Of course, distributed-memory machines scale too, but the programming
effort can be very high and many applications can’t be made to run well,
regardless of the programming effort.

The ease of programming is reflected in the users’ efforts, but also in the
ability of the compiler to be helpful. Our compilers are powerful precisely
because the machine is easy to program.
Larry Carter, a professor at SDSC, says “A day of tuning for the MTA is worth
a month of tuning for a distributed-memory system.”

One parallel loop is enough to completely saturate the machine. There’s no
need for multiple levels of parallelism, parallelism plus cache, parallelism
plus data distribution, etc.

