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Performance Debugging on the
MTA

Preston Briggs
preston@cray.com

This talk introduces a couple of tools for performance debugging.  They
work well together in practice and are the tools of choice for our
benchmarking and applications efforts.  I’ll introduce each tool and show
examples illustrating typical use.
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Architectural Support
The basis for all of our tuning support is the set of counters
provided by the architecture.

•A 64-bit clock counter on each processor, incremented
every tick, and synchronized across the system.

•Additionally, each processor has a phantom counter and a
ready counter.

•Each protection domain maintains 8 private counters: an
instruction counter, a stream counter, a concurrency
counter, a mem-ref counter, and 4 selectable counters.

We have built support around them for tracing the execution of
programs.

The 4 selectable counters may be used to count events like nops, loads,
stores, traps, flops, etc.
Each counter may be accessed from a user-level program in a single
operation.
The phantom counter accumulates pipeline bubbles, when no instruction is
ready to issue.
The ready counter sums the total number of streams ready at each tick.
The instruction counter is incremented each time an instruction issues in
the domain (a protection domain is basically a single job).
The stream counter provides an indication of the average stream usage of a
domain.
The concurrency counter provides an indication of the average number of
memory operations in progress.



3

Traceview
If we compile with tracing enabled, the compiler will generate
code to dump trace events:

• When entering and leaving a routine,

• When entering and leaving a parallel region, and

• At programmer-specified points.

Trace events are logged by the runtime and later displayed by
the traceview tool.

Typically, traceview is used to display a graph of machine
utilization over time.

To compile with tracing, use the -trace command-line flag.
Tracing can be enabled and disabled at any point in the program, using
command-line flags or directives.

When the program is run, the trace events are dumped into a file called
trace.out.

To examine the results, invoke traceview like this
traceview trace.out a.out

(substituting the name of your executable for a.out)

Usually, I’ll limit tracing to a subset of the routines to help keep overheads
down.  Start tracing at the top-most routines in the call tree, exploring
more deeply as you go.  Typically, trace overheads are on the order of 1%.
Sometimes it’s useful to add programmer-specified trace points, e.g.,

#pragma mta trace “end of loop”
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An Example Trace

In this graph, the horizontal axis represent time, in seconds, and the
vertical axis represents a rate (in this case, instructions per clock tick).

Traceview plots two lines:
• The top one shows the number of available issue slots per tick, and
• The bottom one indicates the number of instructions issued per

tick.
The difference between the two indicates phantoms, or wasted
opportunities (our goal is to keep the machine busy by reducing phantoms).

Clicking on a particular location gives more detail, including the location
and access to the source code via a canal window.

It’s also possible to plot the number of memory references and floating-
point operations per tick.
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Interpretation

This is a small snapshot from the middle of a longer run.  By zooming in, we
can examine particular areas more closely, if desired.

We’re running on a single processor (since the availability peaks at almost 1
instruction/tick).
No other program is consuming much of the processor (since the
availability stays high throughout).
We see a sequence of 5 big parallel loops (1 with relatively poor utilization),
a low spot indicating a serial region, and a number of relatively
unimportant noisy areas, indicating a series of short parallel loops
(probably!  We’d need to zoom in for a better look).

The first thing to examine here would be the serial region.
Next might be the parallel region of low utilization (or maybe we’re done).
The rest looks good.
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Possible Problems

Reasons for poor utilization include:

• Lack of parallelism in the code,

• Insufficient streams to exploit available parallelism, and

• Relatively high overheads.

In addition, the time required for different sections of code leads
us to the most significant problems.

When you look at a traceview, focus on the big problems first.

Low utilization (compared to availability) means we need to get more
streams running, somehow.
Lots of noise may indicate high overheads (as we quickly enter and exit a
number of parallel regions).  Zoom in for a closer look.  Try rewriting the
code to move the parallelism out (to a higher level).
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Canal
Canal  (for Compiler ANALysis) shows what the compiler has done
with your code.

Typically, I compile a file
CC -c -par sort.cc

and then look at the results with canal
canal sort.cc

Canal shows us several things
• instruction counts for inner loops
• loops that have been parallelized
• functions that have been inlined
• places where the compiler has added synchronization
• statements that prevent automatic parallelization
• the extent of parallel regions

In addition, canal will report on many of the loop transformations used by
the compiler.

Notice that I’ve used the -par flag on the command line.  I use it here
because parallelization is disabled by default for the C and C++ compilers.
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Here’s what the GUI interface to canal looks like (it’s also possible to
produce a simple ASCII representation that’s somewhat less useful).

The top half shows source code with annotations.  From here, you can scoll
around the file, plus examine the source for inlined functions.
The bottom half shows notes about the selected loop (where the selection is
indicated by the highlight on line 9 in the code).

At the very bottom is a panel for searching.
At the very top is a limited selection of menus to let you examine the
overall structure of the code, print, etc.
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Annotations
Here’s an expanded view of part of the source and annotations:

     | unsigned mask = (1 << 16) - 1;

     | for (unsigned i = 0; i < n; i++) {

5 P  |   unsigned key = (src[i] >> 48) & mask;

5 P$ |   count[key]++;

     | }

     | start[0] = 0;

     | for (unsigned i = 1; i < buckets; i++)

6 L  |   start[i] = start[i - 1] + count[i];

The number on the left refers to the number of the loop containing the
statement.  Loop numbers are assigned in a fairly arbitrary fashion by the
compiler.
Note that the loop headers themselves aren’t numbered, only the
statements inside the loops.
The next few letters encode the annotation information for the loops
containing the statement.  For example, the sequence

5 P

means that the containing loop (loop 5) has been parallelized.  On the other
hand, the sequence

6 L

means that the containing loop is a linear recurrence that has been
rewritten to be solved in parallel.

Clicking on an annotated statement will cause canal to display notes about
the loops enclosing the statement (plus remarks, if any) in the lower half of
the window.
There are many possible annotations, all described in programming guide.
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More Annotations
Here’s another example, with more variety:

       | do i3 = 2, n3 - 1

       |   do i2 = 2, n2 - 1

13 PP  |     r1 = r(1, i2 - 1, i3) + ...

13 PP  |     r1p1 = r(2, i2 - 1, i3) + ...

       |     do i1 = 2, n1 - 1

15 PP- |       r1m1 = r1

15 PPS |       r1 = r1p1

15 PPS |       r1p1 = r(i1 + 1, i2 - 2, i3) + ...

14 PP- |       r2(i1) = r(i1, i2 - 1, i3 - 1) + ...

Here, the annotation
13 PP

means that the two loops containing this statement have been parallelized.

Next, the annotation
15 PP-

means that while the outermost pair of containing loop have been
parallelized, the innermost loop has been left serial (for reasons not having
to do with this statement).  On the other hand, the annotation

15 PPS

points out that this statement is at least partially responsible for serializing
the inner loop.

Finally notice the statement marked
14 PP-

The fact that this statement has a different loop number than the previous
statement (even though they are nested identically) points out that the
compiler has performed some loop distribution, probably to reduce
register demand.
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Notes
Clicking on an annotated statement displays notes about the
enclosing loops:
Loop 5 in counting_sort(...) at line 8 in loop 4

    Loop summary: 2 memory ops, 0 floating-point ops

                  2 insts, needs 30 streams

                  pipelined

Loop 4 in counting_sort(...) in region 1

In parallel phase 2

Dynamically scheduled, variable chunks, min size = 8

Parallel region 1 in counting_sort(...)

Multiple processor implementation

Requesting at least 40 streams

There’s  lot of interesting information here and you needn’t understand it
all in the beginning. I’ll walk you through it all, in stages.
In this case, there is only one enclosing loop in the source code (labeled
Loop 5).  The next loop out (Loop 4) was created by the compiler as part of
its implementation for this particular parallel loop.
The last note refers to the parallel region enclosing the whole set of loops.
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Notes, ...

Loop 5 in counting_sort(...) at line 8 in loop 4

    Loop summary: 2 memory ops, 0 floating-point ops

                  2 insts, needs 30 streams

                  pipelined

Probably the first thing to look at is the number of instructions in the inner
loop.  In this case, we see 2 instructions/iteration.

Next, we like to see that inner loops have been software pipelined.  This
refers to a compiler technique that significantly improves the instruction-
level parallelism of a inner loop, plus helps reduce its size.

The notes about number of memory operations (loads, stores, fetch&adds)
and floating-point operations (adds, subtract, multiplies) help explain how
the work is balanced within the loop.
In this case, we see that the loop has 2 memory ops packed into 2
instructions/iteration.  Since we can only have 1 memory
reference/instruction, this indicates that the compiler has generated
optimal code for this loop (that is, you could not do better in assembly
language).
Finally, the note saying that 30 streams are required for full utilization is an
indication of the compiler’s estimate of the number of streams per
processor it would like to have executing this loop.
Typically, when the program is executed, the code will request at least this
many streams/processor for this loop.  It may actually get less (if other
streams are already busy).
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Notes, ...

Loop 4 in counting_sort(...) in region 1

In parallel phase 2

Dynamically scheduled, variable chunks, min size = 8

In this section, we get more information about the approach used by the
compiler to parallelize the loop.

In this case, the compiler has chosen to use a technique called dynamic self
scheduling (referred to here as dynamic scheduling with variable chunks).
Other possibilities include interleaved, blocked, dynamic, and future
scheduling.  The programming guide discusses each of these approaches
and the tradeoffs between them.

The other information here is that this loop is the second phase in region 1.
Basically, a parallel region consists of a fork-join pair surrounding one or
more phases separated by barriers.  By examining canal’s notes about
phases and regions, the interested programmer can understand how the
compiler has organized the code and work to help minimize overheads.
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Notes, ...

Parallel region 1 in counting_sort(...)

Multiple processor implementation

Requesting at least 40 streams

There are two things to notice here:
• The compiler has generated code to use multiple processors for

this region (the alternative is many threads on a single processor,
which would have less overhead but less performance potential).

• The compiler wants 40 streams/processor for this region.  Usually
this number will be the maximum for all the loops in the region.
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Practice
Playing with canal and a small program is a great way to learn
about the compiler.

In practice, we use traceview to guide our tuning efforts.

• Traceview helps us focus our attention.

• Canal helps us correct the problems.

When I write new code from scratch, I have strong opinions about how the
compiler should do things, and I’ll use canal to verify that the compiler is
doing the right thing (or that it has come up with a better approach).
Then I’ll run the code, again using traceview to verify my prejudices, fixing
any surprises that appear.

When I port code, traceview guides me as I learn my way around, showing
me what’s significant and where I should be spending my efforts.

In all cases, traceview helps me understand when I am finished!
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These last few slides show progress during a week-long period of tuning on
a CFD code.

In this case, I’ve shown the normalized utilization; in other words, the plot
indicates what percentage of the available cycles are being used by my
program.  Since this is early in the tuning process, the percentage is fairly
low – about 22% across the complete run.

The advantage of displaying normalized utilization is that it “filters out”
interference from other users and makes the number of processors
irrelevant.  We’re only concerned with using all of the available instruction
issue slots, regardless of how many there really are.
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Here is there trace produced after rewriting a single routine.  While there
are still some significant serial sections, the utilization and runtime have
both improved significantly.
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Here’s the result after fixing another routine.
Notice how the remaining problem areas seem to expand (since the rest of
the program is shrinking).  Amdahl would not be surprised.
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Now we’re getting to the point where there’s very little left to do.
I attack the last remaining serial sections and try to improve the utilization
in some of the big parallel regions (by increasing the number of streams
requested by the compiler for those loops).
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Looking pretty good.  We’re getting about 87% utilization across the entire
run.  The next step. would be to explore different input data, trying to
exercise different parts of the code.

Notice that we’ve been working away without any indication of the number
of processors available on the machine.  In this case, I actually restricted
myself to a single processor, in an effort to “play nice” on a busy machine,
but the same approach could be used on 10 or 100 processors.  In other
words, this approach is scalable.


