
1

Towards Scalable 1024 Processor Shared Memory Systems

Robert B. Ciotti (ciotti@nas.nasa.gov),
NASA Advanced Supercomputing (NAS)

NASA Ames Research Center, Moffett Field, CA 94035

ABSTRACT: Over the past 3 years, NASA Ames has been involved in a cooperative effort with
SGI to develop the largest single system image systems available. Currently a 1024 Origin3000
is under development, with first boot expected later in the summer of 2001. This paper
discusses some early results with a 512p Origin3000 system and some arcane IRIX system
calls that can dramatically improve scaling performance.

1 Introduction

Within the framework of a cooperative agreement
between NASA and SGI, three (soon to be four) first-of-
a-kind systems have been built and integrated into the
NASA Advanced Supercomputing (www.nas.nasa.gov)
Facility. Two of these machines run in the production
supercomputing cluster(1,5) (a 256p and a 512p
Origin2000). The third system, a 512-processor
Origin3000, was brought up the second week of March
2001. Two of these 512p systems will be combined later
in the summer of 2001 to form the first 1024p single
system image supercomputer.

The primary goal of the project is to provide reliable
platforms to run highly parallel applications that require
tightly coupled processors. To that end, several
elements are discussed that will significantly affect the
outcome:

Interconnect/Topology - An interconnect topology that
minimizes latency while providing ample bisection
bandwidth.

Processing Elements - A processor that is competitive in
sustained performance.

Programming Methodology - The development of a
programming methodology that will allow efficient use of
the machine.

Application Performance - Demonstration of sustained
performance and scaling on a collection of important
applications

System Availability - Reliability such that failures are
infrequent enough so as not to interfere with day to day
production use of the system.

2 Interconnect/Topology

The Origin3000 system is a cache-coherent non-uniform
memory access (ccNUMA) computer. That is, all
memory within a Single System Image (SSI) is globally

addressable and cache coherent for all processors
within that SSI. The effort at NAS will extend the
coherency domain to as many processors as practical.
Larger systems result in increasing latencies as the
number of “hops” from one end of the system to another
grows. In general, this latency is approximately 40ns/hop
+ 285ns. The best-case hop count on any Origin3000
system is 0 hops, or access to node local memory.

The NUMA design is quite flexible in that many different
physical topologies can be constructed which are
optimized for different design goals. As such, the 1024
system will be built in at least 2 different configurations.
Consideration of additional factors beyond latency and
bandwidth, such as how the system will function in a
degraded mode, footprint, maintainability and cost will be
weighed prior to moving forward with the final topology in
late summer 2001.

At least three topologies have been proposed for the
1024 processor system:

Quad-Bristled Hypercube – This topology optimizes for
cost by providing the minimum amount of interconnect
hardware required. It can also be built today with no
modification to the low level PROM code that “discovers”
the physical layout of the machine at boot time. It suffers
from a limited bisection bandwidth of 25
megabytes/second/processor and a higher worst-case
latency of 12 hops. Its primary advantage is that it
should work “out of the box”.

QuadraTree2 – This topology proposed by Ekechi
Nwokah (nwokah@sgi.com) optimizes for latency by
minimizing the radius of the system, a worst case of 6
hops, while providing a significant increase in bisection
bandwidth over the Quad-Bristled Hypercube. It also
provides for tightly integrated groups of 64 cpus for
optimal OpenMP scaling.

Quad-Bristled Fat Tree2 – This topology optimizes for
bandwidth, while sacrificing some latency, 7 hops worst
case with a bisection bandwidth double that of the
QuadraTree. It provides for tightly integrated groups of
32 cpus for optimal OpenMP scaling.

2

Initially the system will be brought up in the Quad-
Bristled Hypercube configuration in order to test basic
functionality of the system and to work through any
difficulties with the Operating System. As much as
practical, tests will be conducted to determine which
alternate topologies will provide the greatest benefit to
applications. Any alternative topology will require that
modifications be made to the PROM code.

3 Processing Elements

SpecFP numbers for single CPU performance indicate
that SGI/MIPS processors are losing ground to other
challengers in the market place (figure 1 – current as of
May, 2001).

SpecFP 2000
harmonic mean of base ratios

200 250 300 350 400 450 500 550

Intel P4 1.7 ghz

Alpha 21264B 833 mhz

Fijitsu P4 1.5 ghz

HP PA-8700 750mhz

Intel P4 1.4 ghz

Alpha 21264A 667 mhz

AMD Athlon 1.3 ghz

SN1MIPS R14k 500 mhz

HP-PA8600 552 mhz

SUN US3 900 mhz

SN1MIPS R12K 400 mhz

IBM P3-2 450mhz

SN0MIPS R12k 400 mhz

Figure 1

However, this view can be misleading in that the trend in
high end computing is moving away from single
processor clusters towards collections of multi-processor
systems. Presumably because of the difficulty in scaling
single processor message passing codes to hundreds or
thousands of processors. The decision most computing
centers face is not whether SMP’s will be used, but how
many processors the SMP will have. The performance
picture changes significantly when looking at the
SpecFP Throughput numbers (figure 2), which provides
a more realistic representation of how large-scale
system will perform under load, when all the processors
are used simultaneously, memory references make it
beyond the cache, and cooperating processes
communicate with one another, One can conclude from
this benchmark that higher sustained rates of
performance are achieved via a more robust design of
the memory system and that memory demand can be

effectively managed up to 128 processors. Indeed,
managing the memory traffic on 1024 way parallel
applications will be critical in achieving high-sustained
rates of performance. Based on previous results for
Origin2000 systems, a performance target of 20% of
peak (or at least 220 gigaflops) on a real world
Computational Fluid Dynamics (CFD) design problem
should be achievable once the system is upgraded from
400mhz to faster processors in early 2002.

SpecFP 2000 Throughput

0
50

100
150
200
250
300
350
400
450
500

1 4 8 16 32 64 128
CPUs

SGI Origin
Dec AlphaServers
HP Superdome
IBM RS/6000
Sun Enterprise

Figure 2

4 Programming Methodology

Shared memory has many benefits over explicit
messaging. Some of those benefits include:

1. Decomposition of the problem is much easier,
and more flexible than that required in an explicit
messaging code.

2. The availability of a larger number of feasible
parallelization strategies.

3. Large sections of code require no modification to
port from earlier non-parallel or vector systems.
For instance sections of code that deal with I/O
may require little or no modification to work
properly.

4. The average communication latency is less than
other messaging approaches.

5. Fewer modifications are required to implement
the parallelism.

6. Load balancing is much easier to manage and
can be dynamic.

A disadvantage in the literature relates to the observed
scaling of OpenMP. This is commonly (and incorrectly)

3

extrapolated to poor performance of shared memory
systems in general. The success in achieving high levels
of parallelism on shared memory systems (i.e., greater
than 100 way parallel) has centered on the development
of a technique conceived of by Jim Taft
(jtaft@nas.nasa.gov) know as Multi Level Parallelism (3,6)

(MLP). The MLP technique requires high-level coarse-
grain decomposition similar to that for MPI(4), but
communicates between these high level processes via
shared memory instead of explicit messages. This
minimizes the communication latency involved by
eliminating any software protocol overhead as well as
allowing any available hardware latency hiding
mechanisms (e.g., cached writes, outstanding memory
references, out of order execution, etc) to function.
OpenMP(5) is then used to parallelize each of these high
level decomposed pieces.

In many cases, however, successful application of the
MLP technique requires the use of arcane, poorly
documented, and undocumented system calls that must
be made to manage thread placement and memory
allocation, thankfully the MLP library hides this from the
user. These calls and others were implemented in the
MLP library by a local SGI site analyst Bron Nelson
(bron@sgi.com), whose understanding and knowledge
of IRIX made possible the success of this approach.

An early version of the MLP library contained a call to a
routine called PID_TO_NODE written by John
Richardson of SGI. The routine creates a memory
locality domain (MLD) and associates it with the process
id of the calling process. This has the effect of “advising”
the kernel that pages allocated by this process are
allocated on a specific node, and that this process is run
on a CPU attached to that node. In MLP terminology,
this is referred to as “pinning” or “PIN to Node”. With the
release of IRIX 6.5.10, some of the interfaces that these
low level routines used were changed. Although the MLP
library still worked, “pinning” did not. This resulted in
temporarily losing performance on the Origin3000
systems.

5 Application Performance

At least three major applications have been ported to the
MLP programming paradigm. INS3D(8,11) – an unsteady
CFD code used for incompressible problems such as the
design of the Space Shuttle main engine, the Data
Assimilation System(9) (DAS), a major NASA climate
research code based in part on CCM3, and
OVERFLOW (7,10), a 3D compressible CFD code, used
commonly throughout NASA and industry. All three
applications show good scaling and performance well
into the low to mid 100s of processors and all three
depend upon MLP techniques to achieve this.
Additionally, “pinning” (as discussed below) is required
by all to achieve the best performance.

5.1 OVERFLOW - MLP

The OVERFLOW CFD code is available from NASA. It is
maintained and distributed by Pieter Buening
(p.g.buning@larc.nasa.gov) at NASA Langley. Subject to
the NASA guidelines for technology export, one can
contact Pieter and obtain a copy of OVERFLOW-MLP,
be sure to specifically ask for the MLP version. The MLP
version was developed by Jim Taft (jtaft@nas.nasa.gov)
and can sustain over 60 gigaflops(10) on the 512
processor Origin2000. The MLP version maintains all the
physics options of the standard release, but has the
additional MLP functionality that includes both a runtime
and dynamic load balancing capability.

Soon after the 512p Origin3000 system was brought on-
line, Dennis Jespersen (jesperse@nas.nasa.gov)
grabbed the latest and greatest MLP OVERFLOW
source, and ran a 32.2 million grid point problem with
150 zones (figure 3). The figure shows the amount of
time a single time step takes. As shown, the scaling on
OVERFLOW basically stops at 64 processors.

Overflow - Transport Configured for Landing
 32 Million Points/150 zones

0
3
6
9

12
15
18
21
24
27
30
33

32 64 96 120 240 256 384 480#CPUS

se
co

n
d

s/
it

te
ra

ti
o

n

SN1 400mhz No Pin

Figure 3

It was known that the pinning code did not work and
Bron Nelson (bron@sgi.com) then set off to create a
new and improved version of PID_TO_NODE for IRIX
6.5.10 and above called MP_ASSIGN_TO_CPU. The
interface to this code is very simple and elegant, but
what it does is crucial to scalability, and how it does it is
not well known outside of SGI engineering.

5.2 Pin to Node via Mp_assign_to_cpu.c

Mp_assign_to_cpu.c is called is called from the forkit.f
routine in the MLP library (the MLP library is available
from Jim Taft of Sienna Software (jtaft@nas.nasa.gov)).
The program is single threaded up to this point in the
execution of the code. After the call to forkit, numpro
MLP process will exist. In the call to this version of
forkit.f, nthread is an array of integers, each of which
defines the number of threads in each of the MLP

4

processes, numpro is an integer that represents the
number of MLP processes to create, and nowpro returns
to the newly created MLP process, its unique MLP id
number:

 subroutine forkit3.f(nthread, numpro, nowpro)

c-----count offsets to starting cpus
 ival=0
 do n=1,numpro
 istart(n) = ival
 ival=ival+nthread(n)
 enddo

c-----spawn the threads - manual forks
 do n=2,numpro
 nowpid=getpid()
 if(nowpid.eq.master) then
 ierror=fork()
 endif
 nowpid=getpid()
 if(nowpid.ne.master) then
 nowpro=n
 go to 200
 endif
 enddo

 200 call omp_set_num_threads(nthread(nowpro))

c-----pin to cpus

!$omp parallel
 call mp_assign_to_cpu3
 (omp_get_thread_num(), istart(nowpro))
!$omp end parallel
…

As shown, each thread of each MLP process makes a
call to mp_assign_to_cpu.c. As stated earlier,
mp_assign_to_cpu.c makes some interesting systems
calls roughly characterized by the following sequence of
events:

1. Figure out which physical memory each cpu is
attached to:

sysmp(MP_NUMA_GETCPUNODEMAP,
(void *)cpu_node_mapping, sizeof(cnodeid_t) * ncpus)

2. Figure out which physical processors the program

has access to by looking at the CPUSET it is
running. Also look at the NODEMASK to see which
nodes are available. Map the NODEMASK nodes to
CPUs and take the logical AND of the CPUSET and
NODEMASK. Create an array from 1 to n of
available cpus to assign threads to:

pmoctl(PMO_GETNODEMASK_UINT64,&sys_nodemask,
sizeof(sys_nodemask))
req.request = CPUSET_QUERY_CPUS;
sysmp(MP_CPUSET, &req)

3. Demand that physical pages be allocated from the
memory attached to the CPU assigned to this
thread:

mld_create(1,1024)
mldset_create(&mld, 1)
mldset_place(mldset, TOPOLOGY_PHYSNODES,
&affinity_info, 1, RQMODE_MANDATORY);

4. Lock the thread that called this routine to a cpu

sysmp(MP_MUSTRUN, cpulist[my_rank+starting_point])

The effect of the mp_assign_to_cpu call is shown in
graphically in figure 4 if the forkit routine were called with
the following: nntthhrreeaadd==[[88,,1133,,……,,1166]],,nnuummpprroo==nn

Figure 4

For example, OMP thread 1, of MLP process 2 should
always run on CPU 9. Any memory allocated by this
thread is placed on Node 2, the closest memory to CPU
9. This has the effect of improving locality. The
technique is applicable to pure OpenMP codes, MPI
codes, and multi-level MPI codes as well. Its
effectiveness is dependent on the application and the
number of CPUs in use, and it has demonstrated a
dramatic on several codes worked on at NAS.

Figures 5 and 6 show the effect of the pin code vs the
non-pin code (seconds per time step in figure 5 and
speedup over 32 cpus in figure 6). As shown, scaling is
significantly improved with gains all the way to 480 cpus.
It is worthwhile to note that the load balancing for this
problem was computed by the application as part of its
initialization. This is quite significant and represents
another big advantage of shared memory systems –
load balancing is flexible and dynamic. With hand
optimization of the load balancing, better speedup
efficiencies can be achieved.

5

Overflow - Transport Configured for Landing
 32 Million Points/150 zones

No Pin vs Pin (O3000)

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

32 64 96 120 240 256 384 480

#CPUS

se
co

n
d

s/
it

te
ra

ti
o

n

SN1 400mhz No Pin

SN1 400mhz Pin

Perfect Speedup

Figure 5

Speedups
Pin vs No Pin

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

32 64 96 120 240 256 384 480
#CPUs

S
p

ee
d

u
p

 o
ve

r
32

p

Perfect Speedup

SN1 400 pin Speedup

SN1 400 nopin Speedup

Figure 6

6 System Availability

In order for the 1024 processor system to be tolerable
from a reliability standpoint it must run from 7 to 14 days
between unscheduled interrupts, counting any system-
related failure (i.e., these include hardware and software
crashes, yet exclude outside causes such as a power
failure). Based upon our experience with the other two
systems6 of this sort, reliability at this level is feasible.
MTTI will be tracked over the life of the system and
reported.

7 Conclusion

Progress continues to be made in making large scale
shared memory systems work and in achieving high
levels of performance on important NASA applications.
To scale optimally beyond 64 cpus pinning techniques
may be required.

8 References

1. J. Petersohn, K. Schilke, Experiences with the
SGI/Cray Origin2000 256 Processor System
Installed at the NAS Facility of the NASA Ames
Research Center, 41st Cray User Group Conference
Proceeding, May 24-28 1999.

2. E. Nwokah, QuadraTree topology for NASA Ames
1024p Origin3000 System, Internal communication,
March 2001.

3. J. Taft, Multi-Level Parallelism, A Simple Highly
Scalable Approach to Parallelism for CFD,
HPCCP/CAS Workshop 98 Proceedings

4. W. Gropp, et al. Using MPI: Portable Parallel
Programming with the Message Passing Interface,
MIT Press, Cambridge, MA, 1994.

5. OpenMP Architecture Review Board, OpenMP. A
Proposed Standard API for Shared Memory
Programming. October, 1997

6. B. Ciotti, J. Taft, J. Petersohn, Early Experiences
with The 512 Processor Single System Image
Origin2000, 42st Cray User Group Conference
Proceedings, May 2000.

7. P.G.Buning, I.T. Chiu, S. Obayashi, Y.M. Rizk, and
J.L. Steger, "Numerical Simulation of the Integrated
Space Shuttle Vehicle in Ascent", AIAA-88-4359-CP,
AIAA Atmospheric Flight Mechanics Conference,
August 1988, Minneapolis, MN.

8. S. E. Rogers, D. Kwak, C. Kiris, "Numerical Solution
of the Incompressible Navier-Stokes Equations for
Steady-State and Time-Dependent Problems, AIAA
Paper 89-0463, January 1989.

9. da Silva, S. J. Lin, The DAO Physical-space/Finite-
volume Data Assimilation System Part I: Algorithm
Theoretical Basis for the “Violet" Core System. DAO
Office Note 2000-NN Version 1.0.3 Dated
11/22/1999

10. J taft, Achieving 60 Gigaflops with OVERFLOW-
MLP, Parallel Computing. March 2001.

11. C. Kiris, D. Kwak, W. Chan., Parallel Unsteady
Turbo-Pump Simulations For Liquid Rocket Engines.
SC2000 conference proceedings, November 2000

