SGI Message-Passing Status and Plans

Karl Feind
kaf@sgi.com
SGI Parallel Communication Team
MPT Themes

- Performance
- Platforms and Interconnects
- Standards
Performance Features in MPT

- Low latency and high bandwidth.
- Fetchop-assisted fast message queuing.
- Fast fetchop tree barriers.
- MPI and SHMEM one-sided communication.
- Large SSI support.
- Automatic NUMA placement.
- Optimized MPI collectives.
- Internal MPI statistics reporting.
- Integration with PCP.
- Single copy send/recv transfers.
- Runtime MPI tuning.
Communication on NUMAlink

MPI Performance on 400 MHz Origin 3000

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>send/recv latency</td>
<td>5.5 usec</td>
</tr>
<tr>
<td>put/get latency</td>
<td>1 usec</td>
</tr>
<tr>
<td>Peak bandwidth (bcopy)</td>
<td>280 Mbytes/sec</td>
</tr>
<tr>
<td>Peak bandwidth (BTE)</td>
<td>600 Mbytes/sec</td>
</tr>
<tr>
<td>All communicate peak</td>
<td>170 Mbytes/sec</td>
</tr>
<tr>
<td>bandwidth per transfer</td>
<td></td>
</tr>
</tbody>
</table>
Barrier Synchronization
Time on O2K and O3K

Number of processes

SUMMIT 2001
43rd CUG Conference on High Performance Computing & Visualization
Assign MPI Ranks to Physical CPUs

- Environment Variable Syntax
 - setenv MPI_DSM_CPULIST 0-15
 - setenv MPI_DSM_CPULIST 0,2,4,6
- Also SMA_DSM_CPULIST
- Maps ranks 0 - N onto the physical CPUs in the order specified
- Useful only on quiet systems
- Easier than using dplace command
Single Copy Speed-up

Alltoally type communication pattern using explicit point to point calls

02K 300 MHz

NPES
Send buffer must be globally accessible (ABI 64 required)
- common block
- symmetric heap (shm allocate/SHPALLOC)
- global heap (ALLOCATE statement with SMA_GLOBAL_ALLOC set)

Set MPI_BUFFER_MAX to 2048
- Best used with MPI_Isend or MPI_Bcast
- Best if sender does not immediately wait for send completion.
- Little payoff below 8 Kbyte messages
Reducing Run-Time Variability

- **Recommended algorithm for workload manager launch of MPI jobs in SSI:**
 - Batch scheduler creates a cpuset
 - Batch scheduler launches mpirun into cpuset
 - MPI job is confined within cpuset during execution by virtue of fork/exec/cpuset semantics
 - MPI job performs automatic NUMA placement within the cpuset
 - When MPI job completes, the batch scheduler destroys the cpuset.

- **NOTE**
 - Use exclusive cpusets or restrict interactive use of the system.
Platforms and Interconnects: MPI

MIPS
- Single kernel NUMAlink
- Partitioned NUMAlink (available June 2001)
- GSN (libst 2.0 work planned in July 2001)
- Myrinet
- Sockets
- HIPPI

SNIA
- Single kernel NUMAlink (prototype working)
- Partitioned NUMAlink (prototyping in late 2001)
- Myrinet (prototype running on IA64)
- Sockets (prototype working)
Platforms and Interconnects: SHMEM

- MIPS
 - Single kernel NUMAlink
 - Partitioned NUMAlink (planned Dec 2001)

- SNIA
 - Single kernel NUMAlink (planned Sep 2001)
 - Partitioned NUMAlink (planned Nov 2001)
Platforms and Interconnects: PVM

- MIPS
 - PVM support is retired after MPT 1.6 (2002)

- SNIA
 - SGI will not provide PVM on SNIA
MPI-2 Features Planned

- MPI I/O enhancements: MPI_Wait integration
- MPI-2 datatypes: replacements for deprecated MPI-1 datatypes
- Expanded one-sided communication
- Process spawn
SGI Message-Passing

References

- “relnotes mpt” gives information about new features and how to install MPT
- “man mpi” tells about all environment variables
- “man shmem” tells about the SHMEM API
- MPT web page: http://www.sgi.com/software/mpt/