sgi

SGI Message-Passing Status and Plans

Karl Feind kaf@sgi.com SGI Parallel Communication Team SUMMIT 2001 43rd CUG Conference on High Performance Computing & Visualization

Performance Features in Sgi

- Low latency and high bandwidth.
- Fetchop-assisted fast message queuing
- Fast fetchop tree barriers
 - MPI and SHMEM one-sided communication
 - Large SSI support

- Automatic NUMA placement
- Optimized MPI collectives
- Internal MPI statistics reporting
- Integration with PCP
 - Single copy send/recv transfers
- Runtime MPI tuning

SUMMIT 2001

Communication on NUMAlink

5.5 usec send/recv latency put/get latency 1 usec Peak bandwidth (bcopy) 280 Mbytes/sec Peak bandwidth (BTE) 600 Mbytes/sec 170 Mbytes/sec All communicate peak bandwidth per transfer

Barrier Synchronization Sgi Time on O2K and O3K

Assign MPI Ranks to Physical CPUs

Environment Variable Syntax setenv MPI DSM CPULIST 0-15 setenv MPI_DSM_CPULIST 0,2,4,6 Also SMA DSM CPULIST Maps ranks 0 - N onto the physical **CPUs in the order specified** Useful only on quiet systems Easier than using dplace command

SQI Single Copy Speed-up Alltoallv type communication pattern using explicit point to point calls 80 70 60 time(msecs) 50 buffered 40 single copy 30 20 10 **02K 300 MHz** 0 100 0 200 300 **NPES SUMMIT 2001**

Single Copy Send/Receive

- Send buffer must be globally accessible (ABI 64 required)
 - common block
 - symmetric heap (shmalloc/SHPALLOC)
 - global heap (ALLOCATE statement with SMA_GLOBAL_ALLOC set)
 - Set MPI_BUFFER_MAX to 2048
 - Best used with MPI_Isend or MPI_Bcast

Best if sender does not immediately wait for send completion.

Little payoff below 8 Kbyte messages

SUMMIT 2001

Reducing Run-Time Variability

sgi

- Recommended algorithm for workload manager launch of MPI jobs in SSI:
 - Batch scheduler creates a cpuset
 - Batch scheduler launches mpirun into cpuset
 - MPI job is confiined within cpuset during execution by virtue of fork/exec/cpuset semantics
 - MPI job performs automatic NUMA placement within the cpuset
 - When MPI job completes, the batch scheduler destroys the cpuset.

NOTE

Use exclusive cpusets or restrict interactive use of the system.

SUMMIT 2001

Platforms and Interconnects: MPI

sgi

MIPS

- Single kernel NUMAlink
- Partitioned NUMAlink (available June 2001)
- GSN (libst 2.0 work planned in July 2001)
- Myrinet
- Sockets
- HIPPI
- **SNI**A
 - Single kernel NUMAlink (prototype working)
 - Partitioned NUMAlink (prototyping in late 2001)
 - Myrinet (prototype running on IA64)
 - Sockets (prototype working)

SUMMIT 2001

Platforms and Interconnects: SHMEM

MIPS

- Single kernel NUMAlink
- Partitioned NUMAlink (planned Dec 2001)

SQl

SNIA

- Single kernel NUMAlink (planned Sep 2001)
- Partitioned NUMAlink (planned Nov 2001)

Platforms and Interconnects: PVM

MIPS

 PVM support is retired after MPT 1.6 (2002)

MPI-2 Features Planned

SQl

- MPI I/O enhancements: MPI_Wait integration
- MPI-2 datatypes: replacements for deprecated MPI-1 datatypes
- Expanded one-sided communication
- Process spawn

43rd CUG Conference on High Performance Computing & Visualization

SUMMIT 2001

SGI Message-Passing References

"relnotes mpt" gives information about new features and how to install MPT

SQI

- "man mpi" tells about all environment variables
- "man shmem" tells about the SHMEM API
 - MPI Programmer's Manual viewable with insight and on the web at http://techpubs.sgi.com
 - MPT web page: http://www.sgi.com/software/mpt/