
Evaluation of C++ Compilers for the Cray T3E

Hans-Hermann Frese Detlef Reichardt
Philipp Rohwetter

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)
Berlin, Germany

Abstract

The C++ compiler provided with the Cray Programming Environment 3.5 is investigated with respect
to conformance with the ISO/IEC 14882:1998 standard and availability of the new C++ standard library
including the Standard Template Library (STL). Comparison is made with other C++ compilers for the
Cray T3E.

1 Introduction

Object oriented programming with C++ [2, 4, 21]
is gaining increasing interest for high-performance
computing applications on massively parallel com-
puters [36, 38]. This arises mainly due to the pos-
sibility of combining the strength of an object ori-
ented language with respect to efficient program de-
velopment with the computing power of massively
parallel systems. For porting C++ programs onto
systems like Cray T3E the standard conformance of
C++ compilers as well as the availability and effi-
cient implementation of (standard) libraries play an
important role. These issues will be addressed in the
present paper.

After a short review of C++ history the main
concepts of the language are summarized. The Cray
C++ Compiler Release 3.5 is evaluated with respect
to standard conformance and compared with the
well known KAI C++ compiler. It will be shown
that the Cray C++ compiler is mostly standard con-
forming with respect to the core language whereas
the accompanying C++ library does not meet the
recent ISO/IEC standard [12]. This has been a
serious obstacle for running C++ applications de-
veloped on other standard conforming programming
environments (e.g. GNU C++) on the Cray T3E.

We will show that with our implementation of
the STLport library [10, 32] for the Cray T3E the
standard conformance is enhanced to meet the re-
quirements of portable C++ applications. There-

fore, the combination of the Cray C++ compiler and
the STLport library for the Cray T3E provides an ef-
ficient programming environment for portable object
oriented programs on a massively parallel system.

2 C++ History

In 1983 a research group at AT&T Bell Laboratories
headed by Bjarne Stroustrup started to develop the
new programming language C++ [33, 34, 35]. The
goal was to facilitate the development of C programs
through an enhanced support of the programmer,
especially by stronger type checking and by mak-
ing object oriented methods available [13, 26, 27].
Additionally, the efficiency of C [11, 15, 16] should
not deteriorate and the compatibility to C should
be maintained. However, the necessary compromise
between efficiency, compatibility with C, and object
oriented paradigms lead to some restrictions for the
feasible flexibility and the implementation of object
oriented paradigms.

C++ presents an enhanced data type concept
over C. It also incorporates the class concept from
Simula 67 [8] and operator overloading from Algol
68 [37]. Early versions of the new programming lan-
guage were called “C with classes”. Later, the name
was changed to “C++” due to a proposal by Rick
Mascitte with reference to the increment operator
“++” in C.

1



The ANSI committee X3.J16 established in 1989
completed the ISO/IEC Standard 14882:1998 for
C++ [12] in 1998. Because this process took nine
years the Annotated C++ Reference Manual (ARM)
[9] published in 1990 became a de-facto standard
which served as a basis for compiler and library de-
velopment in the meantime. However, several fea-
tures added later on to the core language, namely
the concepts of templates and namespaces, lead to
a complete redesign of the C++ standard library
containing the so called Standard Template Library
(STL) [1, 24] as its central part. Hence, in most cases
a reimplementation of the standard library is neces-
sary to meet the recent ISO/IEC standard. There-
fore, we have the temporary situation of dealing with
“old” and “new” versions of the C++ standard li-
brary, which are incompatible with each other.

3 Properties of Object Ori-
ented Programming and
C++

The design goals of C++ were the easier develop-
ment of C programs and an improved support for
programmers. The new fundamental concepts in
C++ are:

• Objects which communicate through messages
and which represent a model of the real world
through their relations.

• The class concept defines user specific data
types, related operators, and access func-
tions. The data encapsulation guarantees that
private objects can exclusively be accessed
through specified methods.

• Inheritance allows the specification of relations
between classes in the sense of abstraction or
specialization. Inheritance also helps to avoid
multiple implementations.

• A strong type concept inhibits undesired side
effects for implicit type conversions like in C.
The programmer has to specify a type conver-
sion explicitly in C++.

• Function and operator overloading allow to de-
fine existing functions for additional parameter
types. The strong type concept allows a func-
tion call only with the parameter types defined
for the function.

• Efficiency : except for virtual functions, the
conceptual extensions in C++ do not cause
any runtime delays compared to C. Even for
heavily used virtual functions in class libraries
there is only a small loss in efficiency.

C++ is a “hybrid” programming language. It
includes the programming language C as a subset.
Because C++ is fully compatible with C, conven-
tional C programs or parts thereof can easily be in-
corporated in C++ and enhanced through the new
concepts.

The newly developed components can be imple-
mented completely in an object oriented manner.
The advantages of object oriented programming in
C++ are:

• The reuse of modules and program skeletons
increases the development productivity and
the program’s quality due to the reuse of tested
components.

• Clearly arranged interfaces facilitate the ex-
pandability and the maintenance of software
products.

• The hierarchical structure of classes, variables,
and methods reduces the complexibility both
of single components and of the entire system.

• The solution, i.e. the desired software product,
can easily be derived from the problem.

• In general, object oriented programming lan-
guages provide a higher abstraction level
through the concepts of inheritance, polymor-
phism, and dynamic binding than traditional
programming languages.

In addition to the earlier concepts of C++, the
ISO/IEC standard added the features:

• templates which were derived from Ada gener-
ics

• multiple inheritance

• static member functions

• pure virtual functions

• overloading of the operators ’->’, ’new’, and
’delete’

• name spaces provide type safe binding of C++
libraries to avoid name collisions.

2



4 Cray C/C++ Programming
Environment

The Cray C/C++ Programming Environment [7]
provides an integrated environment for the develop-
ment of C++ applications. The main components
of the Cray C/C++ Programming Environment in-
clude:

• the native Cray C++ compiler

• the Cray Standard C compiler

• the CrayLibs package including the C++ stan-
dard library

• the CrayTools package including debugging
and performance analysis tools.

4.1 Cray C++ Compiler

As stated in the reference manual [5] the Cray C++
Compiler Release 3.5 accepts almost the C++ lan-
guage as defined by the ISO/IEC standard. The
compiler itself consists of a preprocessor, a language
parser, a prelinker, an optimizer, and a code gener-
ator.

Whereas early versions of the Cray C++ com-
piler generated intermediate C code which was then
compiled to machine code by the Cray Standard C
compiler, later releases now compile C++ programs
to machine code directly. For historical reasons, the
Cray C++ compiler also has a cfront compatibility
mode which also to continue to use old C++ code
developed with the early versions of the Cray C++
compiler.

4.2 Standard Conformance

Our evaluation results in section 8 show that the lat-
est release 3.5 of the Cray C++ compiler conforms
very well with the C++ core language defined in the
ISO/IEC standard with only a few deviations. The
unsupported features from the C++ core language
are documented in the Cray C++ Compiler Refer-
ence Manual [5]:

• reinterpret cast does not allow casting a
pointer to a member of one class to a pointer
to a member of another class if the classes are
unrelated.

• Two-phase name binding in templates are not
implemented.

• Putting a try/catch around the initializers
and body of a constructor is not implemented.

• Template template parameters are not imple-
mented.

• Universal character set escapes are not imple-
mented.

• The export keyword for templates is not im-
plemented.

• extern inline functions are not supported.

• Covariant return types on overriding virtual
functions are not supported.

Whereas for the C++ standard library, there are
many deviations from the ISO/IEC C++ standard
(see section 8).

5 KAI C++ Compiler (KCC)

In 1979 Kuck & Associates, Inc. (KAI) was founded
by David Kuck as a a privately held company. KAI
Software is now a divison of Intel Americas, Inc.

Amongst various other well known products like
the KAP/Pro Toolset and Visual Kap, KAI Software
have developed a very well known C++ compiler [18]
which is highly accepted by the C++ community
due to its conformance to the ISO/IEC standard.
The KAI C++ compiler (KCC) has been ported to
various platforms including the Cray T3E [17].

The following features of the ISO/IEC C++
standard are not supported by the KCC compiler
[19]:

• Two-phase name binding in templates are not
supported.

• A partial specialization of a class member tem-
plate cannot be added outside of the class def-
inition.

• Universal character set escapes are not sup-
ported.

• The export keyword for templates is not sup-
ported.

3



In addition to the standard conformance for the
C++ core language, KCC comes with a mostly ISO
conforming C++ class library and POSIX thread
support.

Our evaluation results in section 8 show that the
KCC compiler is only slightly superior over the Cray
C++ compiler with respect to the core C++ lan-
guage.

6 The C++ Standard Library

In addition to the development and standardization
of C++, a standard library was developed to supple-
ment the C++ compiler. The C++ standard library
[14] extends the capabilities of C++ without blow-
ing out the compiler. Therefore, the C++ standard
library provides a new level of abstraction.

The C++ standard library consists of specialised
libraries to provide standardized methods for three
main areas:

• the Standard Template Library (STL)

• the string classes for string manipulation

• the iostream library for input/output of data.

In addition, the C++ standard library uses spe-
cial mechanisms and templates heavily.

6.1 The Standard Template Library
(STL)

The Standard Template Library (STL) [1, 3, 23, 28,
30] forms the heart of the C++ standard library.
The STL provides solutions for arbitrary definable
element types and forms a new abstraction level.

The STL is based on a teamwork of well struc-
tured components:

• Containers hold objects of a certain type. Dif-
ferent container classes provide different tech-
niques for the administration of objects, e.g.
arrays, linked lists, or keys.

• Iterators provide a mean to iterate over a
quantity of objects. As a decisive advantage,
iterators provide the same interface to access
the elements for all containers.

• Algorithms process elements in quantities and
quantities as a whole. Algorithms can sort,
search, delete, or modify elements using itera-
tors. Therefore, algorithms do not have to be
implemented for every quantity class again.

6.2 Strings

The string classes allow to handle strings like fun-
damental data types. Memory is allocated and re-
turned automatically. The corresponding operators
can be used for assignements and comparisons.

6.3 IOStreams

The stream classes [20] form one of the most im-
portant parts of the C++ standard library. Every
input/output stream consists of a stream of data.
Streams are objects whose characteristics are defined
in classes. Different global objects are defined for the
standard input and output channels.

6.4 Standard Conformance

The C++ standard library which comes with the
KCC compiler is based on the Modena C++ Stan-
dard Library [22]. Our evaluation results in section
8 show that this library conforms very well with the
ISO/IEC C++ standard.

In contrast, the C++ standard library included
with the Cray C++ Programming Environment Re-
lease 3.5 has many deviations from the ISO/IEC
C++ standard.

7 STLport

In 1997 Boris Fomitchev [10] started to port the SGI
STL [28] to gcc and Sun SPARC. A few months
later, it was ported to other systems. As this was
a portable implementation of the STL, it was called
STLport.

To overcome the deviations from the ISO/IEC
C++ standard for the Cray C++ Programming En-
vironment, we decided to port the STLport library
[31, 32] to the Cray T3E operated at the Konrad-
Zuse-Zentrum für Informationstechnik Berlin (ZIB).
The port itself was pretty difficult but with several
code changes we finally managed to get it through
the compiler. Unfortunately, we did not succeed

4



to implement locales for the Cray T3E. This was
judged as a minor problem because HPC number
crunching rarely requires the use of multilingual
character sets in foreign languages.

Our evaluation results in the next section show
that the Cray C++ compiler in combination with
the STLport standard library is a perfect tool for
portable standardized object oriented programming
The new environment conforms almost as good to
the IEEE/IEC C++ standard [12] as the KCC com-
piler.

This combination enables the user to portable
and standard conforming programming on our Cray
T3E.

8 C++ Compiler and Library
Comparison

In [29] Ross Smith provides a detailed comparison
chart for different C++ compilers and standard li-
braries. Our evaluation for the Cray T3E in table 1
on the following page shows that there are only mi-
nor differences between the Cray C++ compiler and
the KAI C++ compiler. The Cray compiler does
not accept covariant returns and exception throws
according to the recent ISO/IEC standard. In addi-
tion, both compilers do not allow templates as pa-
rameters.

The evaluation of the standard library provided
with the Cray C++ Programming Environment
shows that it does not conform with the recent
ISO/IEC standard mainly because it is based on
the old ARM. Whereas, the standard library pro-
vided with the KCC compiler mostly comforms with
the ISO/IEC standard. With our implementation
of the STLport standard library the conformance of
the Cray C++ programming environment can be en-
hanced significantly. The only deviations from the
standard are iostream templates, locales, and string
streams. This was judged as a minor deficiancy for a
massively parallel system like the Cray T3E because
the output of language specific special characters is
not such an important issue for high-performance
number crunching applications.

Overall our evaluation shows that the combi-
nation of the Cray C++ compiler and the STL-
port standard library conforms very well with the
ISO/IEC C++ standard and that the combination
is competitive with the KCC compiler.

9 Conclusions

We have shown that with our implementation of the
STLport library for the Cray T3E the standard con-
formance of the C++ programming environment is
enhanced to meet the requirements of portable C++
applications. Therefore, the combination of the Cray
C++ compiler and the STLport library for the Cray
T3E provides an efficient programming environment
for portable object oriented programs on a massively
parallel system.

References

[1] Matthew Austern. The sgi standard template
library. Dr. Dobb’s Journal, August 1997.

[2] Grady Booch. Object-oriented Analysis and De-
sign. Benjamin/Cummings, 2nd edition, 1994.

[3] Ulrich Breymann. Designing Components with
the C++ STL: A New Approach to Program-
ming. Addison-Wesley, 2nd edition, 2000.

[4] Timothy Budd. Introduction to Object-Oriented
Programming. Addison-Wesley, 2nd edition,
1997.

[5] Cray Inc. Cray Standard C and Cray C++ Ref-
erence Manual. 004-2179-005.

[6] Cray Inc. CRAY T3E C and C++ Optimiza-
tion Guide. 004-2178-005.

[7] Cray Inc. Programming Environment Release
Overview. S-5212-35.

[8] O-J. Dahl, B. Myrhaug, and K. Nygaard. Sim-
ula common base language. Technical Report
S22, Norwegian Computing Center, Oslo, 1970.

[9] Margaret Ellis and Bjarne Stroustrup. The
Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[10] Boris Fomitchev. STLport story. Technical re-
port, STLport Consulting Inc., 2001. http://
www.stlport.org/doc/story.html.

[11] International Standards Organization (ISO).
Programming Languages — C, 1990. ISO/IEC
9899:1990.

5



Core Language

C++ Compiler Cray C++ KAI C++
Release 3.5 3.4∗

Bool ++++ ++++
Covariant return −− ++++
Exceptions ++++ ++++
Explicit ++++ ++++
Export −− −−
For scope ++++ ++++
Koenig lookup ++++ ++++
Namespaces ++++ ++++
New throws ++++
RTTI ++++ ++++
Template basics ++++ ++++
Template as parameter −− −−
T/C partial specialisation ++++ ++++
T/F explicit arguments ++++ ++++
T/F partial ordering ++++ ++++
T/F members ++++ ++++
Typename ++++ ++++

Standard Library

Library CrayLibs STLport KCC
Release 3.5 4.0 3.4∗

Auto ptr −− ++++ ++++
Exception hierarchy −− ++++ ++++
Iostream templates −− −− ++++
Locales −− −− ++
Namespace std −− ++ ++++
Numeric limits −− ++++ ++++
STL algorithms ++ ++++ ++++
STL containers ++ ++++ ++++
STL iterators ++ ++++ ++++
String class ++ ++++ ++++
String streams −− −− ++++
String template ++ ++++ ++++
Valarray −− ++++ ++++

Scoring

−− The feature is not present
+ A token attempt at the feature is made
++ Basic support of the feature is present and usable
+++ The feature is well supported
++++ The feature seems to be completely standard compliant
∗Evaluation for KCC taken from [29]

Table 1: C++ compiler and library comparison chart

6



[12] International Standards Organization (ISO).
Programming Languages — C++, 1998.
ISO/IEC 14882:1998.

[13] Thomas Jell and Axel von Reeken. Ob-
jektorientiertes Programmieren mit C++:
eine Einführung mit vielen Beispielen,
Übungsaufgaben und Musterlösungen. Hanser,
2nd edition, 1993.

[14] Nicolai Josuttis. The C++ Standard Library: A
Tutorial and Reference. Addison-Wesley, 1999.

[15] Brian Kernighan and Dennis Ritchie. The C
Programming Language. Prentice-Hall, 1978.

[16] Brian Kernighan and Dennis Ritchie. The C
Programming Language. ANSI C. Prentice-
Hall, 2nd edition, 1988.

[17] Kuck & Associates. KAI C++ Compiler (KCC)
Release Notes for Cray T3E, 1998.

[18] Kuck & Associates. KAI C++ Compiler (KCC)
User’s Guide, 1998.

[19] Kuck & Associates. KAI C++ Standard Com-
pliance, 2001. http://www.kai.com/C_plus_
plus/Current/doc/standard.html.

[20] Angelika Langer and Klaus Kreft. Standard
C++ IOStreams and Locales: Advanced Pro-
grammer’s Guide and Reference. Addison-
Wesley, 2000.

[21] Stanley Lippmann. C++ Primer. Addison-
Wesley, 1989.

[22] Modena Software, Inc. Modena C++ Stan-
dard Library, 1997. http://www.modena.com/
libpp.htm.

[23] David Musser and Atul Saini. STL Tutorial and
Reference Guide: C++ Programming with the
Standard Template Library. Addison-Wesley,
1996.

[24] P.J. Plauger. The Draft Standard C++ Library.
Prentice-Hall, 1995.

[25] Thomas Plum and Danial Saks. C++ Program-
ming Guidelines. Plum Hall, 1991.

[26] Peter Prinz and Ulla Kirch-Prinz. C++. Lernen
und professionell anwenden. MITP, 1999.

[27] Peter Prinz and Ulla Kirch-Prinz. Objektori-
entiert programmieren mit ANSI C++. Markt
und Technik, 1999.

[28] SGI. Standard Template Library Programmer’s
Guide, 1996.

[29] Ross Smith. C++ compiler comparison
chart. Technical report, The Internet
Group, 2000. http://animal.ihug.co.nz/c+
+/compilers.html.

[30] Alexander Stepanov and Meng Lee. The stan-
dard template library. Technical Report HPL-
94-34, HP Labs, August 1994.

[31] STLport Consulting Inc. STLport License
Agreement, 2001. http://www.stlport.org/
doc/license.html.

[32] STLport Consulting Inc. STLport Release
Notes 4.0, 2001. http://www.stlport.org/
doc/release_notes.html.

[33] Bjarne Stroustrup. The C++ Programming
Language. Addison-Wesley, 1986.

[34] Bjarne Stroustrup. The Design and Evolution
of C++. Addison-Wesley, 1994.

[35] Bjarne Stroustrup. The C++ Programming
Language. Addison-Wesley, 4th edition, 2000.

[36] Gregory V. Wilson and Paul Lu, editors. Par-
allel Programming Using C++. Scientific and
Engineering Computation. MIT Press, 1996.

[37] P.M. Woodward and S.G. Bond. Algol 68-R
Users Guide. Her Majesty’s Stationery Office,
London, 1974.

[38] Daoqui Yang. C++ and Object-Oriented Nu-
meric Computing for Scientists and Engineers.
Springer, 2001.

About the authors

Hans-Hermann Frese is Chairperson of the CUG
Programming Environment Group. He received a
diploma in mathematics from the Universität Biele-
feld, Germany, and works as a consultant for com-
puter science at the Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin (ZIB). His research interests
include high-performance computing systems, new
architectures and programming environments, and
the evaluation and benchmarking of HPC systems.

7



Detlef Reichardt received his Ph.D. in theoreti-
cal physics in 1990. He has done research in sev-
eral scientific areas like molecular dynamics, quan-
tum chemistry, and high-performance computing on
massively parallel systems. After leaving Konrad-
Zuse-Zentrum für Informationstechnik Berlin (ZIB)

where he worked as a consultant for computational
chemistry he is now a self-employed instructor for
computer science.

Philip Rohwetter studies physics at the Freie
Universität Berlin. He also works for the Konrad-
Zuse-Zentrum für Informationstechnik Berlin (ZIB).

8


