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 The NASA Advanced Supercomputing (NAS) Division operates a number of  large SGI Origin 
systems, with all access to their resources controlled  by the Portable Batch System (PBS). In this 
paper, I describe some of  the things that NAS has found it necessary to do, in order to provide  
highly-reliable and robust service on these systems to our users. In  particular, I focus on the use 
of cpusets to (in effect) provide  "software partitioning" of these systems and address some of the 
issues  raised by "coarse-mode addressing" on large Origins.

 

1. A Word About PBS 

 

 The Portable Batch System (PBS) is a resource-management system that  is used to control the 
workload on all of the "compute engines" which  NAS manages. It accomplishes its work by the 
cooperative functioning  of three daemons:

     

 

pbs_server 

 

: the daemon that users interact with, it accepts jobs
                        from users and manages their progress through the system

     

 

pbs_mom

 

   : the one that actually launches jobs into execution,
                        because it has the system-specific knowledge about how
                        that's done and also how to track the resources used
                        by a running job

     

 

pbs_sched

 

  : the daemon that decides which jobs should be run at
                        any given time, based on policy and the availability
                        of resources requested.

 One of PBS' best features is the fact that there is a separate scheduler  and that it is fairly easy 
for a site to provide its own implementation  of that scheduler. This makes it possible to 
implement policies that  would be extremely difficult (if not impossible) to realize in the old  
queue-based approach that characterized (say) NQS.

 Another vital feature is the fact that the PBS source code is available.  (There are now two 
versions of PBS. Anyone can obtain the source code  for the OpenPBS release, while it is 
necessary to negotiate a source- code license agreement in order to get the code for the PBSPro 
release.)  Without access to the source, the work reported here would have been  impossible.

 

2. Some History

 

 A fact: a multithreaded job running on a large Origin system is vulnerable  to a number of 
factors that tend to degrade its performance (and, as a  side effect, lead to a great deal of 
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variation in its measured runtime).  The most obvious problem is caused by the fact that (since it 

 

is

 

 a  single-system-image) the kernel will move processes around within the  machine in a 
manner that grows increasingly less deterministic as the  system load goes up. But the memory 
allocated to those processes does  

 

not

 

 move, so jobs can see significant evidence of the 
"nonuniformity"  in "NUMA". Because this is such a problem, NAS and SGI have devoted quite  
a lot of effort over the past few years to assuaging the difficulty.

 The first approach involved assigning to each job a "nodemask", which  told the kernel just 
which nodes we'd like it to use when allocating  memory to the processes making up that job. 
Since the kernel did attempt  to take memory placement into account when choosing which CPU 
to assign  to a runnable process, the nodemask tended to confine processes and the  memory they 
used to the specified set of CPUs ... so long as it worked.  The problem with using nodemask 
was/is that it is purely advisory, a  hint that the kernel is free to 

 

i

 

gnore when honoring it proves 
to be  impossible (or even merely inconvenient). So we would observe that  everything was 
working just as we had

 

 

 

hoped, until the system became full.  At that point (the very point where 
we most needed the control that  nodemasks tried to provide), all bets were off and, typically, 
things would  proceed from bad to worse. And even when the system was not loaded  down, a 
rogue job could spawn many more processes than the number of  CPUs the user had requested, 
bogging down the system and roughing up  the other users, and we had no effective way to 
prevent this. In  theory, a job could also use more memory than was installed on the  nodes it was 
allocated (that is, the nodemask approach provided no way  to stop that happening), but PBS was 
able to detect this sort of  misbehavior and kill off the offending job.

 Despite the problems with nodemask, we made do with it until we got  our 256-CPU Origin 
system (called steger). Very early in the lifetime  of steger, the variations in runtime for any 
given job were found to  be so extreme that NAS was embarrassed to charge users for running on  
it. In response, steger became (and remained) "free" for more than a  year, while the systems folk 
addressed the problem. The solution that  was eventually deployed has a number of pieces, but 
the most 

 

important

 

  piece involves the use of "cpusets". This was a concept that had been  
developed/implemented by SGI as part of their '

 

miser'

 

 resource management  system. Because 

 

miser

 

 didn't fit very well with the NAS infrastructure  (in particular, getting it to play well with 
PBS did not appear to be  something that anyone would want to undertake), we couldn't make 
use  of 

 

miser

 

 cpusets directly, but they clearly had the properties that  we wanted and needed. So 
NAS and SGI embarked upon a joint effort to  implement cpusets outside of 

 

miser,

 

 initially using 
some new system  calls to define an API that was later encapsulated in the library  'libcpuset.so'.

 

3. What's A Cpuset ?

 

 A cpuset is a named set of CPUs which can have various properties. For  an exhaustive account, 
"

 

man cpuset

 

" is recommended; here, I'll discuss  the particular sorts of cpusets that are used at 
NAS.

 For our purposes, a cpuset always consists of all of the CPUs in a collection  of nodes (the 
allocation algorithm insures this) and a cpuset always has  the following set of properties:
   



 

Page 3

 

EXCLUSIVE:
      Only processes attached to the cpuset can run there

 

   

 

MEMORY_LOCAL:
      Memory for processes attached to the cpuset will be allocated
      locally unless there's no such memory available
   MEMORY_EXCLUSIVE:
      Memory for processes 

 

not

 

 attached to the cpuset will not be
      allocated locally, unless there's no memory available elsewhere
   MEMORY_MANDATORY:
      Memory for attached processes will be allocated locally - if
      no memory is available, what happens depends on the 'POLICY’
      specified
   POLICY_KILL:
      The kernel will free as much space as possible from its heaps,
      but will 

 

not

 

 page out user pages to the swap file. If the
      physical memory of the local nodes is exhausted, the process
      causing the problem will be killed

 and one other that's (apparently) undocumented: CPU_EVENT_NOTIFY. This  last causes the 
creator of the cpuset to be notified whenever POLICY_KILL  forces a process to be terminated, 
the notification being by delivery of  a SIGWINCH.

 Taken all together, the above properties insure that all of the processes  in a given session are 
isolated in their assigned cpuset. They can't  get in the way of other sessions, nor can they be 
interfered with by those  same other sessions. Since cpusets are disjoint from one another and so 
are  the corresponding nodes, we get a "software partitioning" of the system  into as many 
distinct pieces as there are running PBS jobs.

 

 

 

Actually, that last sentence is not quite accurate - there's another  cpuset, named "boot", that is 
not associated with any PBS job. As part  of system startup, this cpuset is established and the 
'

 

init'

 

 process  is moved into it. Since almost everything else is a child of '

 

init

 

',  this means that 
virtually every process begins life running in the  boot cpuset and root privilege is required to 
move off of the boot cpuset.  This is the key to managing these systems under PBS. When 

 

pbs_mom

 

 is told  to place a particular job into execution, that daemon (running as root  in the 
boot cpuset) creates a cpuset for the job out of the CPUs  populating some of the "free" nodes 
and then attaches the job's top-level process  to that cpuset. Since all of the processes that 
constitute the job are  children of that top-level process, this has the effect of placing the  job into 
its very own dedicated cpuset. When the job finishes, the 

 

pbs_mom

 

  daemon tears down the 
cpuset, returning its pieces to the pool of  available resources. In essence, that's how cpuset 
support is added to PBS.

 Of course, there's more to it than that. For instance, there's a good deal  of bookkeeping required 
to keep track of which nodes are available and the  like. Beyond that, most of the additional code 
in 

 

pbs_mom

 

 is needed  because tearing down a cpuset sometimes hits a snag or two. The 
difficulty  is caused by the fact that the kernel will not disassemble a cpuset so  long as there are 
active processes still attached to it. A typical  scenario: an MPI application running on a 
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substantial number of CPUs  encounters an error which causes a large number of its threads to 
dump core  while running out of an NFS-mounted directory. MPI programs tend to produce  
humongous corefiles, there will be a lot of them and they are being written  very slowly. It is 
very likely that the job will exceed its walltime limit  and PBS will try to terminate it, eventually 
delivering a SIGKILL to all of  its processes.  At that point, 

 

pbs_mom

 

 (the daemon that's doing 
all of the  heavy lifting here) will try to destroy the job's cpuset; the attempt will  fail, because 
none of the core-dropping processes has seen the SIGKILL yet  and so they remain active. To 
handle these sorts of complications, the  daemon maintains a list of "stuck" cpusets and 
periodically retries  tearing them down. (Most stuck cpusets are, in fact, reclaimed within  a 
minute or two, 20 seconds or so being fairly typical. Of course, some  are never reclaimed and 
it's necessary to reboot the system to get  back the resources. This doesn't happen very often, 
however. And it  happens a 

 

lot

 

 less now than it did in the early days on lomax.)

 

4. Bigger and Better: Coarse Mode Addressing

 

 When NAS and SGI decided to build an even bigger Origin 2000 system, we  took it as an 
opportunity to revisit the things that we had done to  make the 256 CPU steger system usable. 
The major concern with the new  512 CPU system called lomax had to do with the effects of 
"coarse mode  addressing" on job performance. Briefly, the original design of the  Origin 2000 
incorporated the assumption that the largest system that  they'd ever build would have no more 
than 128 CPUs. As a consequence,  the control messages passing over the internal network have 
only enough  bits in their destination field to address 128 different targets. To  deal with the 
problem caused by a system having more CPUs than can be  addressed, the hardware implements 
a "coarse mode addressing" scheme.  The system can be viewed as a collection of 128-CPU 
pieces (called "octants")  that are cabled together. Within each of these pieces, internal control  
messages can be addressed to individual CPUs, but messages that have to  travel between distinct 
pieces are delivered to all of the CPUs in the rack  where the real intended recipient resides. This 
obviously leads to a  noticeable increase in traffic over the internal network, which we would  
like to avoid as much as possible.

 Clearly, there is no way to avoid the problem for a job using more than  128 CPUs, so we just fit 
those in wherever the nodes can be found. For  smaller jobs, we run them within a single octant, 
which means that we have  to be able to identify the various octants. This is not trivial. Each  
node has both a "compact node id" (its "node number") and a "nasid" (which  is 

 

usually

 

, but not 

 

always

 

, identical to the node number). The  hardware decides whether or not to use coarse mode 
addressing on the basis  of the nasids of the nodes involved. For example, the 4 octants on lomax  
consist of the nodes with nasids 0-63, 64-127, 128-191 and 192-255 and  we would want any 
"small" job to run entirely within one of those 4 pieces.  This means that whatever software is 
handling this task has to be able  to determine the mapping between nasids and node numbers. 
This mapping  can only be reliably determined by walking the hardware graph to find  the nodes 
and using a system-specific '

 

ioctl()

 

' to fetch each node's  nasid. Once this mapping and its inverse 
are known, it is straightforward  to translate between "logical" nodemasks (based on node 
numbers) and  "physical" nodemasks (based on nasids); since cpusets are defined using  a logical 
nodemask, this translation is a vital piece of our implementation.



 

Page 5

 

5. Some Implementation Details

 

 So who has to know about this translation ? It turns out that both 

 

pbs_mom

 

  and 

 

pbs_sched

 

 need 
to incorporate the code that determines the mapping,  as well as sharing the code that determines 
just which nodes should be  assigned to a given job. This unfortunate coupling of the two 
daemons seemed  the natural approach, given the evolution of PBS on large Origins at NAS.  
Back when we relied on nodemasks alone, 

 

pbs_sched

 

 chose the nodemask for  a job and passed 
it along to 

 

pbs_mom

 

, whose only involvement was to pass  it to the kernel as part of the startup 
code. When we switched to using  cpusets, it was clear that 

 

pbs_mom

 

 ought to be determining 
which particular  CPUs to allocate since she was creating the cpuset. So the nodemask code  was 
removed from 

 

pbs_sched

 

 and installed in 

 

pbs_mom

 

 as the allocation  algorithm (it fit in nicely, 
since we really schedule 

 

nodes

 

, not CPUs).  When we set out to redo things for lomax, it seemed 
that 

 

pbs_mom

 

 should  still be the one that actually manages the cpusets, but 

 

pbs_sched

 

 should  

 

also

 

 know how to translate between node numbers and nasids and should  know exactly which 
nodes would be assigned to a job if it were run. That's  because there's no other reliable way to 
enforce the policy that small  jobs must run within an octant. Just recently, we've reverted 
somewhat to  the original design: now, the 

 

s

 

cheduler actually specifies to 

 

pbs_mom

 

 just  which 
cpuset should be assigned to a job, 

 

pbs_mom

 

 honors that request if  possible (and it should 
always be possible, but, if it's not, she allocates  what she can). This change will make it a lot 
easier to implement support  for "advanced reservations" (a feature of PBSPro) and similar 
capabilities.  Unfortunately, it doesn't do away with the coupling of the daemons (since,  for 
example, a job that is run manually by an operator won't have the  suggested nodemask, so 

 

pbs_mom

 

 still has to know the properties that we want  cpusets to have).

   Because they share the node-allocation code, 

 

pbs_mom

 

 and 

 

pbs_sched

 

 also  share a couple of 
configuration parameters (unavoidable, as the algorithm  uses those parameters to decide just 
how to assign nodes to a job). But  the relationship of the two daemons is otherwise not exactly 
symmetrical. The  scheduler relies on 

 

pbs_mom

 

 for information about what resources are  
available and makes no attempt to track that stuff itself. In particular,  each time it runs, the 
scheduler asks 

 

pbs_mom

 

 for her idea of which  nodes are available and for a list of any stuck 
cpusets. The response to  the first request is a string giving the hexadecimal encoding of a  256-
bit nodemask, a bit being set if and only if the corresponding  ("logical") node is not yet 
assigned. This is converted internally to  a bitstring, which is then translated into the 
corresponding "physical"  nodemask bitstring. Once we have those bits in hand, it is a simple  
matter to implement our policy that all jobs asking for no more than  128 CPUs (64 nodes) must 
be run within a single octant. All that's needed  is to test whether the job needs 64 nodes or less 
and, if so, to check  whether the right number of '0' bits can be found in any of the 4 64-bit  
subtrings that correspond to the octants. If the job is big enough to  avoid this policy, we just 
need to see whether there are enough nodes  available at all, which means that users who don't 
care about getting the  best possible timing results can sometimes improve their turnaround by  
asking for more CPUs than they really intend to use. In either case,  if a job is selected to be run, 
the scheduler translates the physical  nodemask to its logical equivalent, adds the corresponding 
bitstring to  the properties of the job (so that 

 

pbs_mom

 

 can retrieve it to determine  which cpuset 
to allocate) and updates its notion of which nodes are  still free prior to moving on to consider 
the next queued job.
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The use made by the scheduler of the list of stuck cpusets is not quite  so straightforward. 
Because lomax is fairly heavily loaded with jobs of  all sizes, it can be hard to find the resources 
requested by a given  large job. So we implement the notion of "starvation" - if a job has  been 
rotting in the queue for longer than a configurable period of time  (currently set at 8 hours), it is 
deemed to be starved and the scheduler  will resort to heroic measures to run any starved jobs. 
These heroic  measures involve draining the system to free up the needed resources for  the 
"most starved" job - given the list of currently running jobs, the  scheduler can estimate how long 
it will be before enough of their resources  will be freed up to allow the targetted job into 
execution. And, by tracking  how the list of free nodes will evolve, the scheduler can also tell 
just  which nodes will have to be assigned to the job when it 

 

does

 

 run. Knowing  these two 
pieces of vital intelligence, the scheduler can "backfill"  around the starved job: any job that (1) 
will complete before we can  run the targetted job anyhow or (2) will be assigned a cpuset that 
won't  interfere with the targetted job can be run right now. This works pretty  well in practice, 
but the early implementation(s) would sometimes decide  that we would 

 

never

 

 be able to run the 
starved job and so would give  up the attempt. This was particularly maddening in cases where 
we 

 

had

 

  been draining the system for several hours and then walked away from the  problem. A 
close examination of the situation turned up the fact that  the anomaly was always caused by a 
stuck cpuset - if it involved CPUs  that would be needed by the starved job, it was a real 
obstruction.  After a few approaches that failed to work satisfactorily, we hit upon  one that 
seems to work pretty well. Using the list of stuck cpusets that  it gets from 

 

pbs_mom

 

, the 
scheduler maintains a linked list of stuck  cpusets that records for each of them just how long it 
has been stuck.  The logic that handles starved jobs makes the assumption that a cpuset  that has 
only been stuck for a configurable time interval (currently set  at 600 seconds) will soon be 
reclaimed and adds the CPUs tied up in such  cpusets back into its notion of what 

 

will

 

 be 
available in the near  future. By doing this, we have almost entirely done away with the problem  
detailed above - the only time this approach doesn't work is when there  is a truly wedged cpuset, 
one that can't be reclaimed without rebooting  the system. (But 

 

no

 

 approach is particularly 
helpful in that case.)

 

6. Finally ...

 

 The version of PBS that we are currently running on our various large  Origin 2000 systems 
seems to work pretty well. And its implementation  of support for cpusets seems to be a big part 
of the reason for its  success.

 Exactly the same software is also being used on our Origin 3000 system  which is (at the 
moment) a 512 CPU single-sytem-image. The only real  changes needed to move to the newer 
system were in the configuration  files, because a node on the Origin 3000 has 4 CPUs (rather 
than 2, as  on the Origin 2000). In the near future, this system will become a  1024-CPU system 
and I expect the software to handle that doubling in  size virtually transparently.


